elasticsearch学习笔记001
《Elasticsearch 核心技术与实战》课程Github代码 https://github.com/onebirdrocks/geektime-ELK
运行的环境: windows
安装了 PowerShell-7.0.0
- 下载 elasticsearch和Kibana 都可以在华为云 https://mirrors.huaweicloud.com/ 上下载到
我安装的 elasticsearch 7.4.0 和 kibana 7.4.0
安装是解压之后,就可以使用的,安装了jdk 1.8.221,在环境变量中,配置了 JAVA_HOME并加入到 path中去了。
启动 powershell,进入 elasticsearch解压的目录,启动 elasticsearch
./bin/elasticsearch
浏览器可通过http://localhost:9200
访问,查看elasticsearch的基本信息
查看安装的插件
./bin/elasticsearch-plugin list
安装一个 analysis-icu
./bin/elasticsearch-plugin install analysis-icu
可用 ./bin/elasticsearch-plugin list
再次查看 安装的插件,然后启动 elasticsearch,
可通过http://localhost:9200/_cat/plugins
查看安装的列表
_cat/
是 elasticsearch 提供的要给 api
- plugins 查看安装的插件
- nodes 查看运行的节点
如何在开发机上运行多个 Elasticsearch实例
./bin/elasticsearch -E node.name=node1 -E cluster.name=geektime -E path.data=node1_data -d
./bin/elasticsearch -E node.name=node2 -E cluster.name=geektime -E path.data=node2_data -d
./bin/elasticsearch -E node.name=node3 -E cluster.name=geektime -E path.data=node3_data -d
node.name
节点的名称
cluster.name
一个相同的集群的名称
pat.data
为每个节点设置存放数据的地址
注: 在 windows下的 powershell 好像不需要最后的 -d
参数,我是打开 三个 powershell的窗口,单独运行上面的命令的
- 删除进程 ps grep|elasticsearch / kill pid
kibana
启动
./bin/kibana
默认是 5601
端口
http://localhost:5601
在 首页 有一个 Add sample data 下面有一个 链接,点击进去,可以进行导入 kibana 提供的简单数据
kinana console
- dev tools
- Search Profiler
- Help + 一些快捷键
- cmd + / (查看API帮助文档)
- cmd + option + l
- cmd + option + 0
- cmd + option + shift + 0
kibana plugins
bin/kibana-plugin install plugin_location
bin/kibana-plugin list
bin/kibana remove
Apps:
- LogTrail
- Own Home
- Shard Allocation
- Corweyor
- Indices View
- Analyze UI
- Cleaner Setting index ttl
- ElastAlert Kibana Plugin
Visualizations:
- 3D Chars
- 3D Graph
- Bmap
- C3JS Visualzations
- Calendar Visualzation
- Cohort analysis
- Collored Metilc Visualzation
- Dendrogram
- Dotplot
- Dropdown
- Enhanced Table
- Enhanced Themap
- Extended Metric
学习在本机Docker环境中云高兴 ELK Stack
- Docker-compose 相关命令
- 运行 docker-compose up [-d]
- docker-compose down
- docker-compose down -v
- docker stop / rm containerID
Demo
- 运行 Docker-compose 本地构建 Elasticsearch 分布式特性
- 集成 Cerobro,方便查看集群状态,默认运行在
9000
端口,可通过http://localhost:9000
logstash
参考文档说明导入 movices.csv 数据,启动 logstash
bin/logstash -f path_logstash.conf
input {
file {
path => "D:/dev/data/movies.csv"
start_position => "beginning"
sincedb_path => "D:/dev/logstash/mydata/moive.txt"
}
}
filter {
csv {
separator => ","
columns => ["id","content","genre"]
}
mutate {
split => { "genre" => "|" }
remove_field => ["path", "host","@timestamp","message"]
}
mutate {
split => ["content", "("]
add_field => { "title" => "%{[content][0]}"}
add_field => { "year" => "%{[content][1]}"}
}
mutate {
convert => {
"year" => "integer"
}
strip => ["title"]
remove_field => ["path", "host","@timestamp","message","content"]
}
}
output {
elasticsearch {
hosts => "http://localhost:9200"
index => "movies"
document_id => "%{id}"
}
stdout {}
}
[2019-10-23T09:58:45,519][ERROR][logstash.javapipeline ][main] Pipeline aborted due to error {:pipeline_id=>"main", :exception=>#<ArgumentError: The "sincedb_path" argument must point to a file, received a directory: "D:/dev/logstash/mydata/moive">,
sincedb_path 需要是一个文件,而不是一个目录
文檔CURD
//create document.自动生成 _id
POSt users/_doc
{
"user": "Mkie",
"post_date": "2019-10-23 00:01:22",
"message": "hello"
}
//create document,指定id,如果id存在,报错
PUT users/_doc/1?op_type=create
{
"user": "kangkang",
"post_date": "2019-10-23 02:01:22",
"message": "hello2"
}
//create document,指定id已经存在,就报错
PUT users/_create/1
{
"user": "lulu",
"post_date": "2019-10-23 03:01:22",
"message": "hello3"
}
//get document by id
GET users/_doc/1
PUT users/_doc/1
{
"user": "my mike"
}
//在原文档增加字段
POST users/_update/1
{
"doc":{
"post_date" : "2019-10-10 23:56:56",
"message": "just message"
}
}
DELETE usrs/_doc/1
bulk 操作
每个操作的失败不会影响其它操作
批量读取 - mget
GEt /_mget
{
"docs":[
{
"_index" : "user",
"_id": 1,
},
{
"_index": "comments",
"_id": 1
}
]
}
msearch _msearch
正排索引和倒排索引
analysis与analyzer
analyzer 分词器
使用 analyzer api
get /_analyze
POST books/_analyzer
{
"filed": "title"
}
Standard Analyzer
- 默认分词器
- 按词划分
- 小写处理
Simple Analyzer
- 按照非字母,非字母都被去除
Whitespace Analyzer
- 按照空格划分
Stop Analyzer
- 相比Simple Analyzer
language analyzer
icu analyzer
需要按照插件
elasticsearch-plugin install analysis-icu
提供了Unicode的支持,更好的支持亚洲语音
更多的中文分词器
- IK
- THULAC
//standard
GET _analyze
{
"analyzer": "standard",
"text": "He my polite be object oh change. Consider no mr am overcame yourself throwing sociable children. Hastily her totally conduct may. "
}
//simple
GET _analyze
{
"analyzer": "simple",
"text": "He my polite be object oh change. Consider no mr am overcame yourself throwing sociable children. Hastily her totally conduct may. "
}
//stop
GET _analyze
{
"analyzer": "stop",
"text": "Six started far placing saw respect females old. Civilly why how end viewing attempt related enquire visitor. Man particular insensible celebrated conviction stimulated principles day. "
}
//whitespace
GET _analyze
{
"analyzer": "whitespace",
"text": "Six started far placing saw respect females old. Civilly why how end viewing attempt related enquire visitor. Man particular insensible celebrated conviction stimulated principles day."
}
//keyword
GET _analyze
{
"analyzer": "keyword",
"text": "Six started far placing saw respect females old. Civilly why how end viewing attempt related enquire visitor. Man particular insensible celebrated conviction stimulated principles day."
}
//pattern,default \w
GET _analyze
{
"analyzer": "pattern",
"text": "2 Six started far-placing saw respect females old. Civilly why how end viewing attempt related enquire visitor. Man particular insensible celebrated conviction stimulated principles day."
}
GET _analyze
{
"analyzer": "english",
"text": "2 Six started far-placing saw respect females old. Civilly why how end viewing attempt related enquire visitor. Man particular insensible celebrated conviction stimulated principles day."
}
GET _analyze
{
"analyzer": "icu_analyzer",
"text": "他說的的確在理“"
}
GET _analyze
{
"analyzer": "standard",
"text": "他說的的確在理“"
}
search api
- URL Search 使用
q
- Request Body search
/_search
/index1/_search
URL Search
- q
- df 默认字段
- sort
- profile
GET /movies/_search?q=2012&df=title
{
"profile":"true"
}
//泛查询
GET /movies/_search?q=2012
{
"profile":"true"
}
//指定查询
GET /movies/_search?q=title:2012
{
"profile":"true"
}
//使用引号
GET /movies/_search?q=title:"Beautiful Mind"
{
"profile":"true"
}
//查找美丽心灵,Mind 泛查询
GET /movies/_search?q=title:Beautiful Mind
{
"profile":"true"
}
//分组,bool查询
GET /movies/_search?q=title:(Beautiful Mind)
{
"profile":"true"
}
//查找美丽心灵
GET /movies/_search?q=title:(Beautiful AND Mind)
{
"profile":"true"
}
GET /movies/_search?q=title:(Beautiful NOT Mind)
{
"profile":"true"
}
//%2B 加号
GET /movies/_search?q=title:(Beautiful %2BMind)
{
"profile":"true"
}
GET /movies/_search?q=year:>=1990
{
"profile":"true"
}
GET /movies/_search?q=title:b*
{
"profile":"true"
}
GET /movies/_search?q=title:beautiful~1
{
"profile":"true"
}
GET /movies/_search?q=title:"Lord Rings"~2
{
"profile":"true"
}
Request body search
POST kibana_sample_data_ecommerce/_search
{
"_source": ["order_date"],
"sort": [
{
"order_date": {
"order": "desc"
}
}
],
"query": {
"match_all": {}
}
}
//脚本字段
GET kibana_sample_data_ecommerce/_search
{
"script_fields": {
"new_field": {
"script": {
"lang":"painless",
"source": "doc['order_date'].value+'_hello'"
}
}
},
"query": {
"match_all": {}
}
}
POST movies/_search
{
"query": {
"match": {
"title": "Last Christmas"
}
}
}
POST movies/_search
{
"query": {
"match": {
"title": {
"query": "Last Christmas",
"operator": "AND"
}
}
}
}
POST movies/_search
{
"query": {
"match_phrase": {
"title": {
"query": "one love"
}
}
}
}
POST movies/_search
{
"query": {
"match_phrase": {
"title": {
"query": "one love",
"slop": 1
}
}
}
}
query_string
simple query string query