爬虫
1.从新闻url获取新闻详情: 字典,anews
2.从列表页的url获取新闻url:列表append(字典) alist
3.生成所页列表页的url并获取全部新闻 :列表extend(列表) allnews
*每个同学爬学号尾数开始的10个列表页
4.设置合理的爬取间隔
import time
import random
time.sleep(random.random()*3)
5.用pandas做简单的数据处理并保存
保存到csv或excel文件
newsdf.to_csv(r'F:\duym\爬虫\gzccnews.csv')
保存到数据库
import sqlite3
with sqlite3.connect('gzccnewsdb.sqlite') as db:
newsdf.to_sql('gzccnewsdb',db)
1.
def click(url): id = re.findall('(\d{1,5})',url)[-1] clickUrl = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'.format(id) resClick = requests.get(clickUrl) newsClick = int(resClick.text.split('.html')[-1].lstrip("('").rstrip("');")) return newsClick def newsdt(showinfo): newsDate = showinfo.split()[0].split(':')[1] newsTime = showinfo.split()[1] newsDT = newsDate+' '+newsTime dt = datetime.strptime(newsDT,'%Y-%m-%d %H:%M:%S')#转换成datetime类型 return dt def anews(url): newsDetail = {} res = requests.get(url) res.encoding = 'utf-8' soup = BeautifulSoup(res.text,'html.parser') newsDetail['newsTitle'] = soup.select('.show-title')[0].text#题目 showinfo = soup.select('.show-info')[0].text newsDetail['newsDT'] = newsdt(showinfo)#时间 newsDetail['newsClick'] = click(newsUrl)#点击次数 print(newsDetail) newsUrl = 'http://news.gzcc.cn/html/2019/xiaoyuanxinwen_0404/11155.html' anews(newsUrl)
2.
def alist(url): res = requests.get(listUrl) res.encoding = 'utf-8' soup = BeautifulSoup(res.text, 'html.parser') newsList = [] for news in soup.select('li'): if len(news.select('.news-list-title'))>0: newsUrl = news.select('a')[0]['href'] newsDesc = news.select('.news-list-description')[0].text newsDict = anews(newsUrl) newsDict['description'] = newsDesc newsList.append(newsDict) print(newsList) listUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/'
3.
allnews = [] for i in range(88,98): listUrl = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'.format(i) allnews.extend(alist(listUrl)) print(allnews)
4
import time import random for i in range(5): time.sleep(random.random()*3)
5.
newsdf=pd.DataFrame(allnews) newsdf.to_csv('123.csv') with sqlite3.connect('demo2.sqlite') as db: newsdf.to_sql('gzccnewsdb',db)