vue虚拟dom 以及diff 算法
一、真实DOM和其解析流程?
浏览器渲染引擎工作流程都差不多,大致分为5步,创建DOM树——创建StyleRules——创建Render树——布局Layout——绘制Painting
第一步,用HTML分析器,分析HTML元素,构建一颗DOM树(标记化和树构建)。
第二步,用CSS分析器,分析CSS文件和元素上的inline样式,生成页面的样式表。
第三步,将DOM树和样式表,关联起来,构建一颗Render树(这一过程又称为Attachment)。每个DOM节点都有attach方法,接受样式信息,返回一个render对象(又名renderer)。这些render对象最终会被构建成一颗Render树。
第四步,有了Render树,浏览器开始布局,为每个Render树上的节点确定一个在显示屏上出现的精确坐标。
第五步,Render树和节点显示坐标都有了,就调用每个节点paint方法,把它们绘制出来。
DOM树的构建是文档加载完成开始的?构建DOM数是一个渐进过程,为达到更好用户体验,渲染引擎会尽快将内容显示在屏幕上。它不必等到整个HTML文档解析完毕之后才开始构建render数和布局。
Render树是DOM树和CSSOM树构建完毕才开始构建的吗?这三个过程在实际进行的时候又不是完全独立,而是会有交叉。会造成一边加载,一遍解析,一遍渲染的工作现象。
CSS的解析是从右往左逆向解析的(从DOM树的下-上解析比上-下解析效率高),嵌套标签越多,解析越慢。
二、JS操作真实DOM的代价!
用我们传统的开发模式,原生JS或JQ操作DOM时,浏览器会从构建DOM树开始从头到尾执行一遍流程。在一次操作中,我需要更新10个DOM节点,浏览器收到第一个DOM请求后并不知道还有9次更新操作,因此会马上执行流程,最终执行10次。例如,第一次计算完,紧接着下一个DOM更新请求,这个节点的坐标值就变了,前一次计算为无用功。计算DOM节点坐标值等都是白白浪费的性能。即使计算机硬件一直在迭代更新,操作DOM的代价仍旧是昂贵的,频繁操作还是会出现页面卡顿,影响用户体验。
三、为什么需要虚拟DOM,它有什么好处?
Web界面由DOM树(树的意思是数据结构)来构建,当其中一部分发生变化时,其实就是对应某个DOM节点发生了变化,
虚拟DOM就是为了解决浏览器性能问题而被设计出来的。如前,若一次操作中有10次更新DOM的动作,虚拟DOM不会立即操作DOM,而是将这10次更新的diff内容保存到本地一个JS对象中,最终将这个JS对象一次性attch到DOM树上,再进行后续操作,避免大量无谓的计算量。所以,用JS对象模拟DOM节点的好处是,页面的更新可以先全部反映在JS对象(虚拟DOM)上,操作内存中的JS对象的速度显然要更快,等更新完成后,再将最终的JS对象映射成真实的DOM,交由浏览器去绘制。
四、实现虚拟DOM
例如一个真实的DOM节点。
我们用JS来模拟DOM节点实现虚拟DOM。
其中的Element方法具体怎么实现的呢?
第一个参数是节点名(如div),第二个参数是节点的属性(如class),第三个参数是子节点(如ul的li)。除了这三个参数会被保存在对象上外,还保存了key和count。其相当于形成了虚拟DOM树。
有了JS对象后,最终还需要将其映射成真实DOM
我们已经完成了创建虚拟DOM并将其映射成真实DOM,这样所有的更新都可以先反应到虚拟DOM上,如何反应?需要用到Diff算法。
两棵树如果完全比较时间复杂度是O(n^3),但参照《深入浅出React和Redux》一书中的介绍,React的Diff算法的时间复杂度是O(n)。要实现这么低的时间复杂度,意味着只能平层的比较两棵树的节点,放弃了深度遍历。这样做,似乎牺牲掉了一定的精确性来换取速度,但考虑到现实中前端页面通常也不会跨层移动DOM元素,这样做是最优的。
深度优先遍历,记录差异
。。。。
Diff操作
在实际代码中,会对新旧两棵树进行一个深度的遍历,每个节点都会有一个标记。每遍历到一个节点就把该节点和新的树进行对比,如果有差异就记录到一个对象中。
下面我们创建一棵新树,用于和之前的树进行比较,来看看Diff算法是怎么操作的。
平层Diff,只有以下4种情况:
1、节点类型变了,例如下图中的P变成了H3。我们将这个过程称之为REPLACE。直接将旧节点卸载并装载新节点。旧节点包括下面的子节点都将被卸载,如果新节点和旧节点仅仅是类型不同,但下面的所有子节点都一样时,这样做效率不高。但为了避免O(n^3)的时间复杂度,这样是值得的。这也提醒了开发者,应该避免无谓的节点类型的变化,例如运行时将div变成p没有意义。
2、节点类型一样,仅仅属性或属性值变了。我们将这个过程称之为PROPS。此时不会触发节点卸载和装载,而是节点更新。
3、文本变了,文本对也是一个Text Node,也比较简单,直接修改文字内容就行了,我们将这个过程称之为TEXT。
4、移动/增加/删除 子节点,我们将这个过程称之为REORDER。看一个例子,在A、B、C、D、E五个节点的B和C中的BC两个节点中间加入一个F节点。
我们简单粗暴的做法是遍历每一个新虚拟DOM的节点,与旧虚拟DOM对比相应节点对比,在旧DOM中是否存在,不同就卸载原来的按上新的。这样会对F后边每一个节点进行操作。卸载C,装载F,卸载D,装载C,卸载E,装载D,装载E。效率太低。
如果我们在JSX里为数组或枚举型元素增加上key后,它能够根据key,直接找到具体位置进行操作,效率比较高。常见的最小编辑距离问题,可以用Levenshtein Distance算法来实现,时间复杂度是O(M*N),但通常我们只要一些简单的移动就能满足需要,降低精确性,将时间复杂度降低到O(max(M,N))即可。
映射成真实DOM
虚拟DOM有了,Diff也有了,现在就可以将Diff应用到真实DOM上了。深度遍历DOM将Diff的内容更新进去。
我们会有两个虚拟DOM(js对象,new/old进行比较diff),用户交互我们操作数据变化new虚拟DOM,old虚拟DOM会映射成实际DOM(js对象生成的DOM文档)通过DOM fragment操作给浏览器渲染。当修改new虚拟DOM,会把newDOM和oldDOM通过diff算法比较,得出diff结果数据表(用4种变换情况表示)。再把diff结果表通过DOM fragment更新到浏览器DOM中。
虚拟DOM的存在的意义?vdom 的真正意义是为了实现跨平台,服务端渲染,以及提供一个性能还算不错 Dom 更新策略。vdom 让整个 mvvm 框架灵活了起来
Diff算法只是为了虚拟DOM比较替换效率更高,通过Diff算法得到diff算法结果数据表(需要进行哪些操作记录表)。原本要操作的DOM在vue这边还是要操作的,只不过用到了js的DOM fragment来操作dom(统一计算出所有变化后统一更新一次DOM)进行浏览器DOM一次性更新。其实DOM fragment我们不用平时发开也能用,但是这样程序员写业务代码就用把DOM操作放到fragment里,这就是框架的价值,程序员才能专注于写业务代码。
=======================
先说一下为什么会有虚拟dom比较这一阶段,我们知道了Vue是数据驱动视图(数据的变化将引起视图的变化),但你发现某个数据改变时,视图是局部刷新而不是整个重新渲染,如何精准的找到数据对应的视图并进行更新呢?那就需要拿到数据改变前后的dom结构,找到差异点并进行更新!
虚拟dom实质上是针对真实dom提炼出的简单对象。就像一个简单的div包含200多个属性,但真正需要的可能只有tagName
,所以对真实dom直接操作将大大影响性能!
简化后的虚拟节点(vnode)大致包含以下属性:
{
tag: 'div', // 标签名
data: {}, // 属性数据,包括class、style、event、props、attrs等
children: [], // 子节点数组,也是vnode结构
text: undefined, // 文本
elm: undefined, // 真实dom
key: undefined // 节点标识
}
虚拟dom的比较,就是找出新节点(vnode)和旧节点(oldVnode)之间的差异,然后对差异进行打补丁(patch)。大致流程如下
整个过程还是比较简单的,新旧节点如果不相似,直接根据新节点创建dom;如果相似,先是对data比较,包括class、style、event、props、attrs等,有不同就调用对应的update函数,然后是对子节点的比较,子节点的比较用到了diff算法,这应该是这篇文章的重点和难点吧。
值得注意的是,在Children Compare
过程中,如果找到了相似的childVnode
,那它们将递归进入新的打补丁过程。
源码解析
这次的源码解析写简洁一点,写太多发现自己都不愿意看 (┬_┬)
开始
先来看patch()
函数:
function patch (oldVnode, vnode) {
var elm, parent;
if (sameVnode(oldVnode, vnode)) {
// 相似就去打补丁(增删改)
patchVnode(oldVnode, vnode);
} else {
// 不相似就整个覆盖
elm = oldVnode.elm;
parent = api.parentNode(elm);
createElm(vnode);
if (parent !== null) {
api.insertBefore(parent, vnode.elm, api.nextSibling(elm));
removeVnodes(parent, [oldVnode], 0, 0);
}
}
return vnode.elm;
}
patch()
函数接收新旧vnode两个参数,传入的这两个参数有个很大的区别:oldVnode的elm
指向真实dom,而vnode的elm
为undefined...但经过patch()
方法后,vnode的elm
也将指向这个(更新过的)真实dom。
判断新旧vnode是否相似的sameVnode()
方法很简单,就是比较tag和key是否一致。
function sameVnode (a, b) {
return a.key === b.key && a.tag === b.tag;
}
打补丁
对于新旧vnode不一致的处理方法很简单,就是根据vnode创建真实dom,代替oldVnode中的elm
插入DOM文档。
对于新旧vnode一致的处理,就是我们前面经常说到的打补丁了。具体什么是打补丁?看看patchVnode()
方法就知道了:
function patchVnode (oldVnode, vnode) {
// 新节点引用旧节点的dom
let elm = vnode.elm = oldVnode.elm;
const oldCh = oldVnode.children;
const ch = vnode.children;
// 调用update钩子
if (vnode.data) {
updateAttrs(oldVnode, vnode);
updateClass(oldVnode, vnode);
updateEventListeners(oldVnode, vnode);
updateProps(oldVnode, vnode);
updateStyle(oldVnode, vnode);
}
// 判断是否为文本节点
if (vnode.text == undefined) {
if (isDef(oldCh) && isDef(ch)) {
if (oldCh !== ch) updateChildren(elm, oldCh, ch, insertedVnodeQueue)
} else if (isDef(ch)) {
if (isDef(oldVnode.text)) api.setTextContent(elm, '')
addVnodes(elm, null, ch, 0, ch.length - 1, insertedVnodeQueue)
} else if (isDef(oldCh)) {
removeVnodes(elm, oldCh, 0, oldCh.length - 1)
} else if (isDef(oldVnode.text)) {
api.setTextContent(elm, '')
}
} else if (oldVnode.text !== vnode.text) {
api.setTextContent(elm, vnode.text)
}
}
打补丁其实就是调用各种updateXXX()
函数,更新真实dom的各个属性。每个的update函数都类似,就拿updateAttrs()
举例看看:
function updateAttrs (oldVnode, vnode) {
let key, cur, old
const elm = vnode.elm
const oldAttrs = oldVnode.data.attrs || {}
const attrs = vnode.data.attrs || {}
// 更新/添加属性
for (key in attrs) {
cur = attrs[key]
old = oldAttrs[key]
if (old !== cur) {
if (booleanAttrsDict[key] && cur == null) {
elm.removeAttribute(key)
} else {
elm.setAttribute(key, cur)
}
}
}
// 删除新节点不存在的属性
for (key in oldAttrs) {
if (!(key in attrs)) {
elm.removeAttribute(key)
}
}
}
属性(Attribute
)的更新函数的大致思路就是:
- 遍历vnode属性,如果和oldVnode不一样就调用
setAttribute()
修改; - 遍历oldVnode属性,如果不在vnode属性中就调用
removeAttribute()
删除。
你会发现里面有个booleanAttrsDict[key]
的判断,是用于判断在不在布尔类型属性字典中。
['allowfullscreen', 'async', 'autofocus', 'autoplay', 'checked', 'compact', 'controls', 'declare', ......]eg:
<video autoplay></video>
,想关闭自动播放,需要移除该属性。
所有数据比较完后,就到子节点的比较了。先判断当前vnode是否为文本节点,如果是文本节点就不用考虑子节点的比较;若是元素节点,就需要分三种情况考虑:
- 新旧节点都有children,那就进入子节点的比较(diff算法);
- 新节点有children,旧节点没有,那就循环创建dom节点;
- 新节点没有children,旧节点有,那就循环删除dom节点。
后面两种情况都比较简单,我们直接对第一种情况,子节点的比较进行分析。
diff算法
子节点比较这部分代码比较多,先说说原理后面再贴代码。先看一张子节点比较的图:
图中的oldCh
和newCh
分别表示新旧子节点数组,它们都有自己的头尾指针oldStartIdx
,oldEndIdx
,newStartIdx
,newEndIdx
,数组里面存储的是vnode,为了容易理解就用a,b,c,d等代替,它们表示不同类型标签(div,span,p)的vnode对象。
子节点的比较实质上就是循环进行头尾节点比较。循环结束的标志就是:旧子节点数组或新子节点数组遍历完,(即 oldStartIdx > oldEndIdx || newStartIdx > newEndIdx
)。大概看一下循环流程:
- 第一步 头头比较。若相似,旧头新头指针后移(即
oldStartIdx++
&&newStartIdx++
),真实dom不变,进入下一次循环;不相似,进入第二步。 - 第二步 尾尾比较。若相似,旧尾新尾指针前移(即
oldEndIdx--
&&newEndIdx--
),真实dom不变,进入下一次循环;不相似,进入第三步。 - 第三步 头尾比较。若相似,旧头指针后移,新尾指针前移(即
oldStartIdx++
&&newEndIdx--
),未确认dom序列中的头移到尾,进入下一次循环;不相似,进入第四步。 - 第四步 尾头比较。若相似,旧尾指针前移,新头指针后移(即
oldEndIdx--
&&newStartIdx++
),未确认dom序列中的尾移到头,进入下一次循环;不相似,进入第五步。 - 第五步 若节点有key且在旧子节点数组中找到sameVnode(tag和key都一致),则将其dom移动到当前真实dom序列的头部,新头指针后移(即
newStartIdx++
);否则,vnode对应的dom(vnode[newStartIdx].elm
)插入当前真实dom序列的头部,新头指针后移(即newStartIdx++
)。
先看看没有key的情况,放个动图看得更清楚些!
相信看完图片有更好的理解到diff算法的精髓,整个过程还是比较简单的。上图中一共进入了6次循环,涉及了每一种情况,逐个叙述一下:
- 第一次是头头相似(都是
a
),dom不改变,新旧头指针均后移。a
节点确认后,真实dom序列为:a,b,c,d,e,f
,未确认dom序列为:b,c,d,e,f
; - 第二次是尾尾相似(都是
f
),dom不改变,新旧尾指针均前移。f
节点确认后,真实dom序列为:a,b,c,d,e,f
,未确认dom序列为:b,c,d,e
; - 第三次是头尾相似(都是
b
),当前剩余真实dom序列中的头移到尾,旧头指针后移,新尾指针前移。b
节点确认后,真实dom序列为:a,c,d,e,b,f
,未确认dom序列为:c,d,e
; - 第四次是尾头相似(都是
e
),当前剩余真实dom序列中的尾移到头,旧尾指针前移,新头指针后移。e
节点确认后,真实dom序列为:a,e,c,d,b,f
,未确认dom序列为:c,d
; - 第五次是均不相似,直接插入到未确认dom序列头部。
g
节点插入后,真实dom序列为:a,e,g,c,d,b,f
,未确认dom序列为:c,d
; - 第六次是均不相似,直接插入到未确认dom序列头部。
h
节点插入后,真实dom序列为:a,e,g,h,c,d,b,f
,未确认dom序列为:c,d
;
但结束循环后,有两种情况需要考虑:
- 新的字节点数组(newCh)被遍历完(
newStartIdx > newEndIdx
)。那就需要把多余的旧dom(oldStartIdx -> oldEndIdx
)都删除,上述例子中就是c,d
; - 新的字节点数组(oldCh)被遍历完(
oldStartIdx > oldEndIdx
)。那就需要把多余的新dom(newStartIdx -> newEndIdx
)都添加。
上面说了这么多都是没有key的情况,说添加了:key
可以优化v-for
的性能,到底是怎么回事呢?因为v-for
大部分情况下生成的都是相同tag
的标签,如果没有key标识,那么相当于每次头头比较都能成功。你想想如果你往v-for
绑定的数组头部push数据,那么整个dom将全部刷新一遍(如果数组每项内容都不一样),那加了key
会有什么帮助呢?这边引用一张图:
有key
的情况,其实就是多了一步匹配查找的过程。也就是上面循环流程中的第五步,会尝试去旧子节点数组中找到与当前新子节点相似的节点,减少dom的操作!
有兴趣的可以看看代码:
function updateChildren (parentElm, oldCh, newCh) {
let oldStartIdx = 0
let newStartIdx = 0
let oldEndIdx = oldCh.length - 1
let oldStartVnode = oldCh[0]
let oldEndVnode = oldCh[oldEndIdx]
let newEndIdx = newCh.length - 1
let newStartVnode = newCh[0]
let newEndVnode = newCh[newEndIdx]
let oldKeyToIdx, idxInOld, elmToMove, before
while (oldStartIdx <= oldEndIdx && newStartIdx <= newEndIdx) {
if (isUndef(oldStartVnode)) {
oldStartVnode = oldCh[++oldStartIdx] // 未定义表示被移动过
} else if (isUndef(oldEndVnode)) {
oldEndVnode = oldCh[--oldEndIdx]
} else if (sameVnode(oldStartVnode, newStartVnode)) { // 头头相似
patchVnode(oldStartVnode, newStartVnode)
oldStartVnode = oldCh[++oldStartIdx]
newStartVnode = newCh[++newStartIdx]
} else if (sameVnode(oldEndVnode, newEndVnode)) { // 尾尾相似
patchVnode(oldEndVnode, newEndVnode)
oldEndVnode = oldCh[--oldEndIdx]
newEndVnode = newCh[--newEndIdx]
} else if (sameVnode(oldStartVnode, newEndVnode)) { // 头尾相似