杭电acm 1232 畅通工程(并查集)

                              畅通工程

                     Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
                                    Total Submission(s): 70621    Accepted Submission(s): 37752

Problem Description

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

 Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
 
 Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
 
 Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
 
Sample Output
1
0
2
998
 
这道题主要使用的方法是并查集,他要求的是至少还要修多少条路。那么我们在开始的时候就假设这所有城镇之间都没有路,那么每个城镇就都是一个独立的集合。然后在输入之后的道路的时候,如果两条道路并不在一个集合里面,那么我们就把他们所在的集合合并在一起。如果他们本身就在一个集合里了,就不做处理,以此求出应该在修几条路。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
using namespace std;
int a[1010];
int find(int x){
    if(x!=a[x]){
        a[x]=find(a[x]);
    }
    return a[x];
} 

int main(){
    int n,m,i,x,y,sum;
    while(~scanf("%d",&n)&&n){
        scanf("%d",&m);
        for(i=0;i<=n;i++){// 为了简单起见,城镇从1到N编号所以,刚开始的时候假设是没有路联通的,每个城镇都是一个独立的集合 
            a[i]=i;
        }
        sum=n-1;//因为一共是n个城镇,要想使这n个城镇联通,最少需要n-1条道路 
        for(i=0;i<m;i++){//输入m条道路,然后查找每条道路所连接的是不是独立的两个集合
            scanf("%d%d",&x,&y);
            x=find(x);
            y=find(y);
            if(x!=y){//如果是就将这两个集合合并 ,要修建的道路条数也减去一 
                a[y]=x;
                sum--;
            }
        }
        printf("%d\n",sum);//输出要建的道路条数 
    }
}

 

posted @ 2018-10-22 14:29  fromzore  阅读(216)  评论(0编辑  收藏  举报