设计模式学习笔记(1)
前言
以前粗略的看过设计模式,有的看懂了,有的没看懂,有的看懂了又忘了,有的在写程序时已不知不觉在用了.
总之,现在从头学习一遍,并且开始做笔记,这样记的牢。
以后写程序也要有意识的向设计模式靠拢。
那本经典的《设计模式》准备去买一本,一共有23种设计模式,这里我先研究了5种,后面争取都研究完,例子是C#的,不过对于C++、java、delphi应该都是适用的。
欢迎大家和我讨论!
目录
1.singleton
2.strategy
3.Decorator
4.composite
5.state
1.Singleton
说明:保证类只有一个实例。
实例:
using System;
class Singleton
{
private static Singleton singleton = null;
public static Singleton Instance()
{
if (null == singleton)
singleton = new Singleton();
return singleton;
}
private Singleton()
{
}
}
class Application
{
public static void Main()
{
Singleton s1 = Singleton.Instance();
//Singleton s2 = new Singleton(); //错误:构造器不可访问
Singleton s2 = Singleton.Instance();
if (s1.Equals(s2)) // 引用相等
Console.WriteLine("Instances are identical");
}
}
/*以下是程序输出结果:
Instances are identical
*/
2.strategy
说明:利用接口实现方法无关化,客户程序同特定算法实现细节毫无耦合关系。
实例:
using System;
namespace strategy1
{
/// <summary>
/// Summary description for Class.
/// </summary>
interface Strategy
{
bool IsPrime(int n);
}
class Miller : Strategy
{
public bool IsPrime(int n){
bool result = false;
//使用Miller法测试n是否为素数,果真,则更新result值
Console.WriteLine("Using Miller's algorithm");
return result;
}
}
class Fermat : Strategy
{
public bool IsPrime(int n){
bool result = false;
//使用Fermat法测试n是否为素数,果真,则更新result值
Console.WriteLine("Using Fermat's algorithm");
return result;
}
}
class Mersenne : Strategy
{
public bool IsPrime(int n)
{
bool result = false;
//使用Mersenne法测试n是否为素数,果真,则更新result值
Console.WriteLine("Using Mersenne's algorithm");
return result;
}
}
class Primality
{
private Strategy strategy;
public Primality(Strategy s)
{
strategy = s;
}
public bool Test(int n)
{
return strategy.IsPrime(n);
}
}
class Class
{
[STAThread]
static void Main(string[] args)
{
Console.Write("Number to be tested: ");
string input = Console.ReadLine();
int n = Int32.Parse(input);
Console.Write("Desired algorithm performance: lo, medium, hi? ");
input = Console.ReadLine();
char ch = char.Parse(input);
Primality prime = null;
switch (ch)
{
case 'l':
case 'L':
prime = new Primality(new Miller());
break;
case 'm':
case 'M':
prime = new Primality(new Fermat());
break;
case 'h':
case 'H':
prime = new Primality(new Mersenne());
break;
}
if (prime != null)
{
bool result = prime.Test(n);
}
else
Console.WriteLine("Bad Choice!");
Console.ReadLine();
}
}
}
/*以下是某次测试输出结果:
Number to be tested:1
Desired algorithm performance: lo, medium, hi? M
Using Fermat's algorithm
*/
3.Decorator
说明:通过子类实现功能的灵活扩展。
实例:
using System;
namespace decortation
{
/// <summary>
/// Summary description for Class.
/// </summary>
class FileTransfer
{
public virtual void Download(string url, byte[] data, int size)
{
// 下载文件
}
public virtual void Upload(string url, byte[] data, int size)
{
// 上传文件
}
}
class Decorator : FileTransfer
{
private FileTransfer ft = new FileTransfer();
private bool IsAccessAllowed(string url)
{
bool result = true;
// 决定是否对请求的URL访问授权
return result;
}
private void LogAccess(string url)
{
// 将URL、时间、用户身份等信息写入数据库
Console.WriteLine("Logging access to {0}", url);
}
public override void Download(string url, byte[] data, int size)
{
if (!IsAccessAllowed(url)) return;
ft.Download(url, data, size);
LogAccess(url);
}
public override void Upload(string url, byte[] data, int size)
{
if (!IsAccessAllowed(url)) return;
ft.Upload(url, data, size);
LogAccess(url);
}
}
class Class
{
public static void Main()
{
Console.Write("Enter URL to access: ");
string url = Console.ReadLine();
Console.Write("Enable logging and access check? ");
string input = Console.ReadLine();
char ch = char.Parse(input);
bool decoration = (ch == 'y' || ch == 'Y');
FileTransfer ft = null;
if (!decoration)
ft = new FileTransfer();
else
ft = new Decorator();
byte[] buf = new byte[1024];
ft.Download(url, buf, 1024);
}
}
}
4.composite
说明:利用接口达到用一致的方式来访问所有对象(这个很常用的)。
实例:
C#示例:
using System;
using System.Collections;
interface Shape
{
void Draw();
}
class Line : Shape
{
private double x1, y1, x2, y2;
public Line(double x1, double y1, double x2, double y2)
{
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
}
public void Draw()
{
//从(x1, y1) 到(x2, y2)画一条线
Console.WriteLine("Drawing a line");
}
}
class Circle : Shape
{
private double x, y, r;
public Circle(double x, double y, double radius)
{
this.x = x;
this.y = y;
this.r = r;
}
public void Draw()
{
//以(x, y)为圆心,r为半径画一个圆
Console.WriteLine("Drawing a circle");
}
}
class Drawing : Shape
{
private ArrayList shapes;
public Drawing()
{
shapes = new ArrayList();
}
public void Add(Shape s)
{
shapes.Add(s);
}
public void Draw()
{
IEnumerator enumerator = shapes.GetEnumerator();
while (enumerator.MoveNext())
((Shape) enumerator.Current).Draw();
}
}
class Application
{
public static void Main()
{
Shape[] array = new Shape[3];
array[0] = new Line(0, 0, 10, 12);
array[1] = new Circle(2, 3, 5.5);
Drawing dwg = new Drawing();
dwg.Add(new Line(3, 4, 3, 5));
dwg.Add(new Circle(5, 6, 7.7));
array[2] = dwg;
// 画出所有的图形,注意:用一致的方式来访问所有对象
for (int i = 0; i < 3; ++i)
array[i].Draw();
}
}
/*以下是程序输出结果:
Drawing a line
Drawing a circle
Drawing a line
Drawing a circle
*/
5.state
说明:当对象内部状态改变时自动改变它的行为。
实例:
这个实例比较长,我简单说明一下,这是一个自动售货机的例子,客户可以投掷面值5、10、25的硬币,货物价值25。每当客户投了硬币就打印投的钱数和,如果够了25,就提示货物售出。
state是个抽象类,它派生了5、10、15、20、25几种钱数和的类(也就是所有可能的钱数和),由于它们都是从STATE继承的,所以它们都有一个STATE类型的静态成员state作为状态的标识(你可以把它想象成全局变量),每个类都接收投入5、10、25面值的硬币,对应的方法是
public virtual void AddNickel(VendingMachine vm) { }
public virtual void AddDime(VendingMachine vm) { }
public virtual void AddQuarter(VendingMachine vm) { }
虽然方法一样,但是每个类内部实现的状态跃迁是不一样的,比如5元的类,接收10元后state就跃迁到了15元,以此类推。
仔细看看吧,这是一个非常有意思的实例。不过说实话,这样实现程序确实太累了,也许在别的应用中可以降低程序员的负担,不过我还没发现(有的话告诉我)。
另外如果有100种状态,有10种路径,难道每个状态都要继承(100×10)?那coding起来岂不是太累,而且代码不要太长啊,唉,当程序员真不容易啊...
using System;
abstract class State
{
public virtual void AddNickel(VendingMachine vm) { }
public virtual void AddDime(VendingMachine vm) { }
public virtual void AddQuarter(VendingMachine vm) { }
protected virtual void ChangeState(VendingMachine vm, State s)
{
vm.ChangeState(s);
}
}
class VendingMachine
{
private State state;
public VendingMachine()
{
Console.WriteLine("The Vending Machine is now online: product costs 25c");
state = Start.Instance();
}
public void ChangeState(State to)
{
state = to;
}
public void Vend()
{
// 发饮料
Console.WriteLine("Dispensing product...Thank you!");
}
public void AddNickel()
{
state.AddNickel(this);
}
public void AddDime()
{
state.AddDime(this);
}
public void AddQuarter()
{
state.AddQuarter(this);
}
}
class Start : State
{
private static State state = new Start();
private Start()
{
}
public static State Instance()
{
// singleton逻辑
Console.WriteLine("Credit: 0c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Five.Instance());
}
public override void AddDime(VendingMachine vm)
{
ChangeState(vm, Ten.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
}
}
class Five : State
{
private static State state = new Five();
private Five()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 5c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Ten.Instance());
}
public override void AddDime(VendingMachine vm)
{
ChangeState(vm, Fifteen.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Ten : State
{
private static State state = new Ten();
private Ten()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 10c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Fifteen.Instance());
}
public override void AddDime(VendingMachine vm)
{
ChangeState(vm, Twenty.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Fifteen : State
{
private static State state = new Fifteen();
private Fifteen()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 15c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
ChangeState(vm, Twenty.Instance());
}
public override void AddDime(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Twenty : State
{
private static State state = new Twenty();
private Twenty()
{
}
public static State Instance()
{
// singleton 逻辑
Console.WriteLine("Credit: 20c");
return state;
}
public override void AddNickel(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance());
}
public override void AddDime(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance());
}
public override void AddQuarter(VendingMachine vm)
{
vm.Vend();
ChangeState(vm, Start.Instance()); // no change returned :-)
}
}
class Application
{
public static void Main()
{
int coin = 0;
string input = null;
VendingMachine vm = new VendingMachine();
while (true)
{
Console.Write("Insert a coin (5, 10, 25): ");
input = Console.ReadLine();
coin = Int32.Parse(input);
switch (coin)
{
case 5:
vm.AddNickel();
break;
case 10:
vm.AddDime();
break;
case 25:
vm.AddQuarter();
break;
default:
break;
}
}
}
}
/*以下是某次运行时输出结果:
The Vending Machine is now online: product costs 25c
Credit: 0c
Insert a coin <5, 10, 25>: 5
Credit: 5c
Insert a coin <5, 10, 25>: 10
Credit: 15c
Insert a coin <5, 10, 25>: 5
Credit: 20c
Insert a coin <5, 10, 25>: 5
Dispensing product...Thank you!
*/