Precision / Recall 及 F1-score
True positive(tp): algorithm predicts 1 and it actually is 1
True negtive(tn): algorithm predicts 0 and it actually is 0
False positive(fp): algorithm predicts 1 and it actually is 0
False negative(fn): algorithm predicts 0 and it actually is 1
Precision: 在所有预测为1结果里面有多少是真实为1
$precision = \frac{True\ positives}{\#predicted\ positives} = \frac{tp}{tp + fp}$
Recall: 所有真实为1的有多少能够被成功预测为1
$recall = \frac{True\ positives}{\#actual\ positives} = \frac{tp}{tp + fn}$
F1-score: 偏斜集衡量指标
$F_{1}\textrm{-}score = \frac{2PR}{P+R}$