freyhe

导航

HashMap源码分析

按位运行符

image-2021100916455270611

HashMap集合(高级)

1.HashMap集合简介

​ HashMap基于哈希表的Map接口实现,是以key-value存储形式存在,即主要用来存放键值对。HashMap 的实现不是同步的,这意味着它不是线程安全的。它的key、value都可以为null。此外,HashMap中的映射不是有序的。

​ JDK1.8 之前 HashMap 由 数组+链表 组成的,数组是 HashMap 的主体,链表则是主要为了解决哈希冲突(两个对象调用的hashCode方法计算的哈希码值一致导致计算的数组索引值相同)而存在的(“拉链法”解决冲突).JDK1.8 以后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(或者红黑树的边界值,默认为 8)并且当前数组的长度大于64时,此时此索引位置上的所有数据改为使用红黑树存储。

补充:将链表转换成红黑树前会判断,即使阈值大于8,但是数组长度小于64,此时并不会将链表变为红黑树。而是选择进行数组扩容。

这样做的目的是因为数组比较小,尽量避开红黑树结构,这种情况下变为红黑树结构,反而会降低效率,因为红黑树需要进行左旋,右旋,变色这些操作来保持平衡 。同时数组长度小于64时,搜索时间相对要快些。所以综上所述为了提高性能和减少搜索时间,底层在阈值大于8并且数组长度大于64时,链表才转换为红黑树。具体可以参考 treeifyBin方法。

当然虽然增了红黑树作为底层数据结构,结构变得复杂了,但是阈值大于8并且数组长度大于64时,链表转换为红黑树时,效率也变的更高效。

小结:

特点:

1.存取无序的

2.键和值位置都可以是null,但是键位置只能是一个null

3.键位置是唯一的,底层的数据结构控制键的

4.jdk1.8前数据结构是:链表 + 数组 jdk1.8之后是 : 链表 + 数组 + 红黑树

5.阈值(边界值) > 8 并且数组长度大于64,才将链表转换为红黑树,变为红黑树的目的是为了高效的查询。

2.HashMap集合底层的数据结构

2.1数据结构概念

[数据](https://baike.baidu.com/item/数据/5947370)结构是[计算机](https://baike.baidu.com/item/计算机/140338)存储、组织[数据](https://baike.baidu.com/item/数据)的方式。数据结构是指相互之间存在一种或多种特定关系的[数据元素](https://baike.baidu.com/item/数据元素/715313)的集合。通常情况下,精心选择的数据结构可以带来更高的运行或者存储[效率](https://baike.baidu.com/item/效率/868847)。数据结构往往同高效的检索[算法](https://baike.baidu.com/item/算法/209025)和[索引](https://baike.baidu.com/item/索引/5716853)技术有关。 

数据结构:就是存储数据的一种方式。ArrayList LinkedList

在JDK1.8 之前 HashMap 由 数组+链表 数据结构组成的。

在JDK1.8 之后 HashMap 由 数组+链表 +红黑树数据结构组成的。

2.2HashMap底层的数据结构存储数据的过程

存储过程如下所示:

使用的代码:

public class Demo01 {
    public static void main(String[] args) {
        HashMap<String, Integer> map = new HashMap<>();
        map.put("刘德华", 53);
        map.put("柳岩", 35);
        map.put("张学友", 55);
        map.put("郭富城", 52);
        map.put("黎明", 51);
        map.put("林青霞", 55);
        map.put("刘德华", 50);
    }
}

image-20220521204603177

说明:

1.面试题:HashMap中hash函数是怎么实现的?还有哪些hash函数的实现方式?

对于key的hashCode做hash操作,无符号右移(>>>)16位然后做按位异或(^)运算。
还有平方取中法,伪随机数法和取余数法。这三种效率都比较低。而无符号右移16位异或运算效率是最高的。至于底层是如何计算的我们下面看源码时给大家讲解。
static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

高16 bit 不变,低16 bit 和高16 bit 做了一个异或

得到的 hashcode 转化为32位二进制,前16位和后16位低16 bit和高16 bit做了一个异或

问题:为什么要这样操作呢?

如果当n即数组长度很小,假设是16的话,那么n-1即为 ---》1111 ,这样的值和hashCode()直接做按位与操作,实际上只使用了哈希值的后4位。如果当哈希值的高位变化很大,低位变化很小,这样就很容易造成哈希冲突了,所以这里把高低位都利用起来,从而减少了哈希冲突

2.面试题:当两个对象的hashCode相等时会怎么样?

会产生哈希碰撞,若key值内容相同则替换旧的value.不然连接到链表后面,链表长度超过阈值8就转换为红黑树存储。

3.面试题:何时发生哈希碰撞和什么是哈希碰撞,如何解决哈希碰撞?

只要两个元素的key计算的哈希码值相同就会发生哈希碰撞。jdk8前使用链表解决哈希碰撞。jdk8之后使用链表+红黑树解决哈希碰撞。

4.面试题:如果两个键的hashcode相同,如何存储键值对?

hashcode相同,通过equals比较内容是否相同。
相同:则新的value覆盖之前的value
不相同:则将新的键值对添加到哈希表中

5.在不断的添加数据的过程中,会涉及到扩容问题,当超出临界值(且要存放的位置非空)时,扩容。默认的扩容方式:扩容为原来容量的2倍,并将原有的数据复制过来。

6.通过上述描述,当位于一个链表中的元素较多,即hash值相等但是内容不相等的元素较多时,通过key值依次查找的效率较低。而JDK1.8中,哈希表存储采用数组+链表+红黑树实现,当链表长度(阀值)超过 8 时且当前数组的长度 > 64时,将链表转换为红黑树,这样大大减少了查找时间。jdk8在哈希表中引入红黑树的原因只是为了查找效率更高。

简单的来说,哈希表是由数组+链表+红黑树(JDK1.8增加了红黑树部分)实现的。如下图所示。

image-20220521204726866

但是这样的话问题来了,传统hashMap的缺点,1.8为什么引入红黑树?这样结构的话不是更麻烦了吗,为何阈值大于8换成红黑树?

JDK 1.8 以前 HashMap 的实现是 数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当 HashMap 中有大量的元素都存放到同一个桶中时,这个桶下有一条长长的链表,这个时候 HashMap 就相当于一个单链表,假如单链表有 n 个元素,遍历的时间复杂度就是 O(n),完全失去了它的优势。针对这种情况,JDK 1.8 中引入了 红黑树(查找时间复杂度为 O(logn))来优化这个问题。 当链表长度很小的时候,即使遍历,速度也非常快,但是当链表长度不断变长,肯定会对查询性能有一定的影响,所以才需要转成树。

至于为什么阈值是8, 下面我们在分析源码的时候会介绍。

7.总结:

上述我们大概阐述了HashMap底层存储数据的方式。为了方便大家更好的理解,我们结合一个存储流程图来进一步说明一下:(jdk8存储过程)

image-20220521204744281

说明:

1.size表示 HashMap中K-V的实时数量 , 注意这个不等于数组的长度 。

2.threshold( 临界值) =capacity(容量) * loadFactor( 加载因子 )。这个值是当前已占用数组长度的最大值。size超过这个临界值就重新resize(扩容),扩容后的 HashMap 容量是之前容量的两倍 。

3.HashMap继承关系

HashMap继承关系如下图所示:

image-20220521204919018

说明:

  • Cloneable 空接口,表示可以克隆。 创建并返回HashMap对象的一个副本。
  • Serializable 序列化接口。属于标记性接口。HashMap对象可以被序列化和反序列化。
  • AbstractMap 父类提供了Map实现接口。以最大限度地减少实现此接口所需的工作。

补充:通过上述继承关系我们发现一个很奇怪的现象, 就是HashMap已经继承了AbstractMap而AbstractMap类实现了Map接口,那为什么HashMap还要在实现Map接口呢?同样在ArrayList中LinkedList中都是这种结构。

据 java 集合框架的创始人Josh Bloch描述,这样的写法是一个失误。在java集合框架中,类似这样的写法很多,最开始写java集合框架的时候,他认为这样写,在某些地方可能是有价值的,直到他意识到错了。显然的,JDK的维护者,后来不认为这个小小的失误值得去修改,所以就这样存在下来了。

4.HashMap集合类的成员

4.1成员变量

1.序列化版本号

private static final long serialVersionUID = 362498820763181265L;

2.集合的初始化容量( 必须是二的n次幂 )

//默认的初始容量是16 -- 1<<4相当于1*2的4次方---1*16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   

问题: 为什么必须是2的n次幂?如果输入值不是2的幂比如10会怎么样?

HashMap构造方法还可以指定集合的初始化容量大小:

HashMap(int initialCapacity) 构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

根据上述讲解我们已经知道,当向HashMap中添加一个元素的时候,需要根据key的hash值,去确定其在数组中的具体位置。

HashMap为了存取高效,要尽量较少碰撞,就是要尽量把数据分配均匀,每个链表长度大致相同,这个实现就在把数据存到哪个链表中的算法。

这个算法实际就是取模,hash%length,计算机中直接求余效率不如位移运算(这点上述已经讲解)。

所以源码中做了优化,使用 hash&(length-1),而实际上hash%length等于hash&(length-1)的前提是length是2的n次幂。

为什么这样能均匀分布减少碰撞呢?2的n次方实际就是1后面n个0,2的n次方-1 实际就是n个1;

举例:

说明:按位与运算:相同的二进制数位上,都是1的时候,结果为1,否则为零。

例如长度为8时候,3&(8-1)=3  2&(8-1)=2 ,不同位置上,不碰撞;
例如长度length为8时候,8是2的3次幂。二进制是:1000
length-1 二进制运算:
	1000
-	   1
---------------------
     111
如下所示:
hash&(length-1)
3   &(8    - 1)=3  
	00000011  3 hash
&   00000111  7 length-1
---------------------
	00000011-----》3 数组下标
	
hash&(length-1)
2 &  (8 -    1) = 2  
	00000010  2 hash
&   00000111  7 length-1
---------------------
	00000010-----》2  数组下标
说明:上述计算结果是不同位置上,不碰撞;
例如长度为9时候,3&(9-1)=0  2&(9-1)=0 ,都在0上,碰撞了;
例如长度length为9时候,9不是2的n次幂。二进制是:00001001
length-1 二进制运算:
	1001
-	   1
---------------------
    1000
如下所示:
hash&(length-1)
3   &(9    - 1)=0  
	00000011  3 hash
&   00001000  8 length-1 
---------------------
	00000000-----》0  数组下标
	
hash&(length-1)
2 &  (9 -    1) = 2  
	00000010 2 hash
&   00001000 8 length-1 
---------------------
	00000000-----》0  数组下标
说明:上述计算结果都在0上,碰撞了;

注意: 当然如果不考虑效率直接求余即可(就不需要要求长度必须是2的n次方了)

小结:

​ 1.由上面可以看出,当我们根据key的hash确定其在数组的位置时,如果n为2的幂次方,可以保证数据的均匀插入,如果n不是2的幂次方,可能数组的一些位置永远不会插入数据,浪费数组的空间,加大hash冲突。

​ 2.另一方面,一般我们可能会想通过 % 求余来确定位置,这样也可以,只不过性能不如 & 运算。而且当n是2的幂次方时:hash & (length - 1) == hash % length

​ 3.因此,HashMap 容量为2次幂的原因,就是为了数据的的均匀分布,减少hash冲突,毕竟hash冲突越大,代表数组中一个链的长度越大,这样的话会降低hashmap的性能

4.如果创建HashMap对象时,输入的数组长度是10,不是2的幂,HashMap通过一通位移运算和或运算得到的肯定是2的幂次数,并且是离那个数最近的数字。

源代码如下:

//创建HashMap集合的对象,指定数组长度是10,不是2的幂
HashMap hashMap = new HashMap(10);
public HashMap(int initialCapacity) {//initialCapacity=10
   this(initialCapacity, DEFAULT_LOAD_FACTOR);
 }
public HashMap(int initialCapacity, float loadFactor) {//initialCapacity=10
     if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);//initialCapacity=10
}
  /**
   * Returns a power of two size for the given target capacity.
   * 如果创建HashMap对象时,输入的数组长度是10,不是2的幂,
   * HashMap通过一通位移运算和或运算得到的肯定是2的幂次数,并且是 离那个数最近的数字
  */
    static final int tableSizeFor(int cap) {//int cap = 10
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

说明:

由此可以看到,当在实例化HashMap实例时,如果给定了initialCapacity(假设是10),由于HashMap的capacity必须都是2的幂,因此这个方法用于找到大于等于initialCapacity(假设是10)的最小的2的幂(initialCapacity如果就是2的幂,则返回的还是这个数)。
下面分析这个算法:
1)、首先,为什么要对cap做减1操作。int n = cap - 1;
这是为了防止,cap已经是2的幂。如果cap已经是2的幂, 又没有执行这个减1操作,则执行完后面的几条无符号右移操作之后,返回的capacity将是这个cap的2倍。如果不懂,要看完后面的几个无符号右移之后再回来看看。
下面看看这几个无符号右移操作:
2)、如果n这时为0了(经过了cap-1之后),则经过后面的几次无符号右移依然是0,最后返回的capacity是 1(最后有个n+1的操作)。
这里只讨论n不等于0的情况。

3)、注意:|(按位或运算):运算规则:相同的二进制数位上,都是0的时候,结果为0,否则为1。

第一次右移

int n = cap - 1;//cap=10  n=9
n |= n >>> 1;
	00000000 00000000 00000000 00001001 //9
|	
	00000000 00000000 00000000 00000100 //9右移之后变为4
-------------------------------------------------
	00000000 00000000 00000000 00001101 //按位异或之后是13

由于n不等于0,则n的二进制表示中总会有一bit为1,这时考虑最高位的1。通过无符号右移1位,则将最高位的1右移了1位,再做或操作,使得n的二进制表示中与最高位的1紧邻的右边一位也为1,如:

00000000 00000000 00000000 00001101

第二次右移

 n |= n >>> 2;//n通过第一次右移变为了:n=13
	00000000 00000000 00000000 00001101  // 13
|
    00000000 00000000 00000000 00000011  //13右移之后变为3
-------------------------------------------------
	00000000 00000000 00000000 00001111 //按位异或之后是15

注意,这个n已经经过了n |= n >>> 1; 操作。假设此时n为00000000 00000000 00000000 00001101 ,则n无符号右移两位,会将最高位两个连续的1右移两位,然后再与原来的n做或操作,这样n的二进制表示的高位中会有4个连续的1。如:

00000000 00000000 00000000 00001111 //按位异或之后是15

第三次右移 :

n |= n >>> 4;//n通过第一、二次右移变为了:n=15
	00000000 00000000 00000000 00001111  // 15
|
    00000000 00000000 00000000 00000000  //15右移之后变为0
-------------------------------------------------
	00000000 00000000 00000000 00001111 //按位异或之后是15

这次把已经有的高位中的连续的4个1,右移4位,再做或操作,这样n的二进制表示的高位中正常会有8个连续的1。如00001111 1111xxxxxx 。
以此类推
注意,容量最大也就是32bit的正数,因此最后n |= n >>> 16; ,最多也就32个1(但是这已经是负数了。在执行tableSizeFor之前,对initialCapacity做了判断,如果大于MAXIMUM_CAPACITY(2 ^ 30),则取MAXIMUM_CAPACITY。如果等于MAXIMUM_CAPACITY(2 ^ 30),会执行移位操作。所以这里面的移位操作之后,最大30个1,不会大于等于MAXIMUM_CAPACITY。30个1,加1之后得2 ^ 30) 。
请看下面的一个完整例子:

image-20191115151657917

注意,得到的这个capacity却被赋值给了threshold。

this.threshold = tableSizeFor(initialCapacity);//initialCapacity=10

3.默认的负载因子,默认值是0.75

static final float DEFAULT_LOAD_FACTOR = 0.75f;

4.集合最大容量

//集合最大容量的上限是:2的30次幂
static final int MAXIMUM_CAPACITY = 1 << 30;

1 << 30 表示一个很大的数字,int一般都不会超过的
int总共4字节,最高位是符号位,如果写成(1<<31)就变成负数

5.当链表的值超过8则会转红黑树(1.8新增)

 //当桶(bucket)上的结点数大于这个值时会转成红黑树
 static final int TREEIFY_THRESHOLD = 8;

问题:为什么Map桶中节点个数超过8才转为红黑树?

8这个阈值定义在HashMap中,针对这个成员变量,在源码的注释中只说明了8是bin(bin就是bucket(桶))从链表转成树的阈值,但是并没有说明为什么是8:

在HashMap中有一段注释说明: 我们继续往下看 :

Because TreeNodes are about twice the size of regular nodes, we use them only when bins contain enough nodes to warrant use (see TREEIFY_THRESHOLD). And when they become too small (due to removal or resizing) they are converted back to plain bins.  In usages with well-distributed user hashCodes, tree bins are rarely used.  Ideally, under random hashCodes, the frequency of nodes in bins follows a Poisson distribution
(http://en.wikipedia.org/wiki/Poisson_distribution) with a parameter of about 0.5 on average for the default resizing threshold of 0.75, although with a large variance because of resizing granularity. Ignoring variance, the expected occurrences of list size k are (exp(-0.5)*pow(0.5, k)/factorial(k)).
The first values are:
因为树节点的大小大约是普通节点的两倍,所以我们只在箱子包含足够的节点时才使用树节点(参见TREEIFY_THRESHOLD)。当它们变得太小(由于删除或调整大小)时,就会被转换回普通的桶。在使用分布良好的用户hashcode时,很少使用树箱。理想情况下,在随机哈希码下,箱子中节点的频率服从泊松分布
(http://en.wikipedia.org/wiki/Poisson_distribution),默认调整阈值为0.75,平均参数约为0.5,尽管由于调整粒度的差异很大。忽略方差,列表大小k的预期出现次数是(exp(-0.5)*pow(0.5, k)/factorial(k))。
第一个值是:

0:    0.60653066
1:    0.30326533
2:    0.07581633
3:    0.01263606
4:    0.00157952
5:    0.00015795
6:    0.00001316
7:    0.00000094
8:    0.00000006
more: less than 1 in ten million

TreeNodes占用空间是普通Nodes的两倍,所以只有当bin包含足够多的节点时才会转成TreeNodes,而是否足够多就是由TREEIFY_THRESHOLD的值决定的。当bin中节点数变少时,又会转成普通的bin。并且我们查看源码的时候发现,链表长度达到8就转成红黑树,当长度降到6就转成普通bin。

这样就解释了为什么不是一开始就将其转换为TreeNodes,而是需要一定节点数才转为TreeNodes,说白了就是权衡,空间和时间的权衡。

这段内容还说到:当hashCode离散性很好的时候,树型bin用到的概率非常小,因为数据均匀分布在每个bin中,几乎不会有bin中链表长度会达到阈值。但是在随机hashCode下,离散性可能会变差,然而JDK又不能阻止用户实现这种不好的hash算法,因此就可能导致不均匀的数据分布。不过理想情况下随机hashCode算法下所有bin中节点的分布频率会遵循泊松分布,我们可以看到,一个bin中链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。所以,之所以选择8,不是随便决定的,而是根据概率统计决定的。由此可见,发展将近30年的Java每一项改动和优化都是非常严谨和科学的。

也就是说:选择8因为符合泊松分布,超过8的时候,概率已经非常小了,所以我们选择8这个数字。

补充:

1).

 Poisson分布(泊松分布),是一种统计与概率学里常见到的离散[概率分布]。
泊松分布的概率函数为: P(k)=(λ^k)*(e^(-λ))/k!
 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。

泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。

在一定时间内某交通路口所发生的事故个数,是一个典型的例子。

2).以下是我在研究这个问题时,在一些资料上面翻看的解释:供大家参考:

红黑树的平均查找长度是log(n),如果长度为8,平均查找长度为log(8)=3,链表的平均查找长度为n/2,当长度为8时,平均查找长度为8/2=4,这才有转换成树的必要;链表长度如果是小于等于6,6/2=3,而log(6)=2.6,虽然速度也很快的,但是转化为树结构和生成树的时间并不会太短。

6.当链表的值小于6则会从红黑树转回链表

 //当桶(bucket)上的结点数小于这个值时树转链表
 static final int UNTREEIFY_THRESHOLD = 6;

7.当Map里面的数量超过这个值时,表中的桶才能进行树形化 ,否则桶内元素太多时会扩容,而不是树形化 为了避免进行扩容、树形化选择的冲突,这个值不能小于 4 * TREEIFY_THRESHOLD (8)

//桶中结构转化为红黑树对应的数组长度最小的值 
static final int MIN_TREEIFY_CAPACITY = 64;

8、table用来初始化(必须是二的n次幂)(重点)

//存储元素的数组 
transient Node<K,V>[] table;

table在JDK1.8中我们了解到HashMap是由数组加链表加红黑树来组成的结构其中table就是HashMap中的数组,jdk8之前数组类型是Entry<K,V>类型。从jdk1.8之后是Node<K,V>类型。只是换了个名字,都实现了一样的接口:Map.Entry<K,V>。负责存储键值对数据的。

9、用来存放缓存

//存放具体元素的集合
transient Set<Map.Entry<K,V>> entrySet;

10、 HashMap中存放元素的个数(重点)

//存放元素的个数,注意这个不等于数组的长度。
 transient int size;

size为HashMap中K-V的实时数量,不是数组table的长度。

11、 用来记录HashMap的修改次数

// 每次扩容和更改map结构的计数器  
// fail-fast机制,并发情况下判断此值是否被异常修改(次数对不上),如果被异常修改则抛出 ConcurrentModificationException
 transient int modCount;  

12、 用来调整大小下一个容量的值计算方式为(容量*负载因子)

// 临界值 当实际大小(容量*负载因子)超过临界值时,会进行扩容
int threshold;

13、 哈希表的加载因子(重点)

// 加载因子
final float loadFactor;

说明:

1.loadFactor加载因子,是用来衡量 HashMap 满的程度,表示HashMap的疏密程度,影响hash操作到同一个数组位置的概率,计算HashMap的实时加载因子的方法为:size/capacity,而不是占用桶的数量去除以capacity。capacity 是桶的数量,也就是 table 的长度length。

loadFactor太大导致查找元素效率低,太小导致数组的利用率低,存放的数据会很分散。loadFactor的默认值为0.75f是官方给出的一个比较好的临界值

当HashMap里面容纳的元素已经达到HashMap数组长度的75%时,表示HashMap太挤了,需要扩容,而扩容这个过程涉及到 rehash、复制数据等操作,非常消耗性能。,所以开发中尽量减少扩容的次数,可以通过创建HashMap集合对象时指定初始容量来尽量避免。

同时在HashMap的构造器中可以定制loadFactor。

构造方法:
HashMap(int initialCapacity, float loadFactor) 构造一个带指定初始容量和加载因子的空 HashMap。

2.为什么加载因子设置为0.75,初始化临界值是12?

loadFactor越趋近于1,那么 数组中存放的数据(entry)也就越多,也就越密,也就是会让链表的长度增加,loadFactor越小,也就是趋近于0,数组中存放的数据(entry)也就越少,也就越稀疏。

image-20191115173553375

如果希望链表尽可能少些。要提前扩容,有的数组空间有可能一直没有存储数据。加载因子尽可能小一些。

举例:

例如:加载因子是0.4。 那么16*0.4--->6 如果数组中满6个空间就扩容会造成数组利用率太低了。
	 加载因子是0.9。 那么16*0.9---->14 那么这样就会导致链表有点多了。导致查找元素效率低。

所以既兼顾数组利用率又考虑链表不要太多,经过大量测试0.75是最佳方案。

  • threshold计算公式:capacity(数组长度默认16) * loadFactor(负载因子默认0.75)。这个值是当前已占用数组长度的最大值。当Size>=threshold的时候,那么就要考虑对数组的resize(扩容),也就是说,这个的意思就是 衡量数组是否需要扩增的一个标准。 扩容后的 HashMap 容量是之前容量的两倍.

4.2构造方法

HashMap 中重要的构造方法,它们分别如下:

1、构造一个空的 HashMap ,默认初始容量(16)和默认负载因子(0.75)。

public HashMap() {
   this.loadFactor = DEFAULT_LOAD_FACTOR; // 将默认的加载因子0.75赋值给loadFactor,并没有创建数组
}

2、 构造一个具有指定的初始容量和默认负载因子(0.75) HashMap

 // 指定“容量大小”的构造函数
  public HashMap(int initialCapacity) {
      this(initialCapacity, DEFAULT_LOAD_FACTOR);
  }

3、 构造一个具有指定的初始容量和负载因子的 HashMap。我们来分析一下。

/*
	 指定“容量大小”和“加载因子”的构造函数
	 initialCapacity: 指定的容量
	 loadFactor:指定的加载因子
*/
public HashMap(int initialCapacity, float loadFactor) {
    	//判断初始化容量initialCapacity是否小于0
        if (initialCapacity < 0)
            //如果小于0,则抛出非法的参数异常IllegalArgumentException
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
    	//判断初始化容量initialCapacity是否大于集合的最大容量MAXIMUM_CAPACITY-》2的30次幂
        if (initialCapacity > MAXIMUM_CAPACITY)
            //如果超过MAXIMUM_CAPACITY,会将MAXIMUM_CAPACITY赋值给initialCapacity
            initialCapacity = MAXIMUM_CAPACITY;
    	//判断负载因子loadFactor是否小于等于0或者是否是一个非数值
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            //如果满足上述其中之一,则抛出非法的参数异常IllegalArgumentException
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
     	//将指定的加载因子赋值给HashMap成员变量的负载因子loadFactor
        this.loadFactor = loadFactor;
    	/*
    		tableSizeFor(initialCapacity) 判断指定的初始化容量是否是2的n次幂,如果不是那么会变为比指			定初始化容量大的最小的2的n次幂。这点上述已经讲解过。
    		但是注意,在tableSizeFor方法体内部将计算后的数据返回给调用这里了,并且直接赋值给threshold边			界值了。有些人会觉得这里是一个bug,应该这样书写:
    		this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;
    		这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。
			但是,请注意,在jdk8以后的构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推			 迟到了put方法中,在put方法中会对threshold重新计算,put方法的具体实现我们下面会进行讲解
    	*/
        this.threshold = tableSizeFor(initialCapacity);
    }
最后调用了tableSizeFor,来看一下方法实现:
     /**
     * Returns a power of two size for the given target capacity.
       返回比指定初始化容量大的最小的2的n次幂
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

说明:

对于 this.threshold = tableSizeFor(initialCapacity); 疑问解答:

tableSizeFor(initialCapacity) 判断指定的初始化容量是否是2的n次幂,如果不是那么会变为比指			定初始化容量大的最小的2的n次幂。这点上述已经讲解过。
但是注意,在tableSizeFor方法体内部将计算后的数据返回给调用这里了,并且直接赋值给threshold边			界值了。有些人会觉得这里是一个bug,应该这样书写:
this.threshold = tableSizeFor(initialCapacity) * this.loadFactor;
这样才符合threshold的意思(当HashMap的size到达threshold这个阈值时会扩容)。
但是,请注意,在jdk8以后的构造方法中,并没有对table这个成员变量进行初始化,table的初始化被推			 迟到了put方法中,在put方法中会对threshold重新计算,put方法的具体实现我们下面会进行讲解

4、包含另一个“Map”的构造函数

//构造一个映射关系与指定 Map 相同的新 HashMap。
public HashMap(Map<? extends K, ? extends V> m) {
    	//负载因子loadFactor变为默认的负载因子0.75
         this.loadFactor = DEFAULT_LOAD_FACTOR;
         putMapEntries(m, false);
 }

最后调用了putMapEntries,来看一下方法实现:

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
    //获取参数集合的长度
    int s = m.size();
    if (s > 0)
    {
        //判断参数集合的长度是否大于0,说明大于0
        if (table == null)  // 判断table是否已经初始化
        { // pre-size
                // 未初始化,s为m的实际元素个数
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                        (int)ft : MAXIMUM_CAPACITY);
                // 计算得到的t大于阈值,则初始化阈值
                if (t > threshold)
                    threshold = tableSizeFor(t);
        }
        // 已初始化,并且m元素个数大于阈值,进行扩容处理
        else if (s > threshold)
            resize();
        // 将m中的所有元素添加至HashMap中
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
            putVal(hash(key), key, value, false, evict);
        }
    }
}

注意:

float ft = ((float)s / loadFactor) + 1.0F;这一行代码中为什么要加1.0F ?

s/loadFactor的结果是小数,加1.0F与(int)ft相当于是对小数做一个向上取整以尽可能的保证更大容量,更大的容量能够减少resize的调用次数。所以 + 1.0F是为了获取更大的容量。

例如:原来集合的元素个数是6个,那么6/0.75是8,是2的n次幂,那么新的数组大小就是8了。然后原来数组的数据就会存储到长度是8的新的数组中了,这样会导致在存储元素的时候,容量不够,还得继续扩容,那么性能降低了,而如果+1呢,数组长度直接变为16了,这样可以减少数组的扩容。

4.3成员方法

4.3.1增加方法put

put方法是比较复杂的,实现步骤大致如下:

1)先通过hash值计算出key映射到哪个桶;

2)如果桶上没有碰撞冲突,则直接插入;

3)如果出现碰撞冲突了,则需要处理冲突:

​ a:如果该桶使用红黑树处理冲突,则调用红黑树的方法插入数据;

​ b:否则采用传统的链式方法插入。如果链的长度达到临界值,则把链转变为红黑树;

4)如果桶中存在重复的键,则为该键替换新值value;

5)如果size大于阈值threshold,则进行扩容;

具体的方法如下:

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}

说明:

​ 1)HashMap只提供了put用于添加元素,putVal方法只是给put方法调用的一个方法,并没有提供给用户使用。 所以我们重点看putVal方法。

2)我们可以看到在putVal()方法中key在这里执行了一下hash()方法,来看一下Hash方法是如何实现的。 
 static final int hash(Object key) 
 {
        int h;
     	/*
     		1)如果key等于null:
     			可以看到当key等于null的时候也是有哈希值的,返回的是0.
     		2)如果key不等于null:
     			首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的					hash值
     	*/
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 }

从上面可以得知HashMap是支持Key为空的,而HashTable是直接用Key来获取HashCode所以key为空会抛异常。

{其实上面就已经解释了为什么HashMap的长度为什么要是2的幂因为HashMap 使用的方法很巧妙,它通过 hash & (table.length -1)来得到该对象的保存位,前面说过 HashMap 底层数组的长度总是2的n次方,这是HashMap在速度上的优化。当 length 总是2的n次方时,hash & (length-1)运算等价于对 length 取模,也就是hash%length,但是&比%具有更高的效率。比如 n % 32 = n & (32 -1)。}

解读上述hash方法:

我们先研究下key的哈希值是如何计算出来的。key的哈希值是通过上述方法计算出来的。

这个哈希方法首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的 hash值。计算过程如下所示:

 static final int hash(Object key) 
 {
        int h;
     	/*
     		1)如果key等于null:
     			可以看到当key等于null的时候也是有哈希值的,返回的是0.
     		2)如果key不等于null:
     			首先计算出key的hashCode赋值给h,然后与h无符号右移16位后的二进制进行按位异或得到最后的					hash值
     	*/
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 }

在putVal函数中使用到了上述hash函数计算的哈希值:

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        。。。。。。。。。。。。。。
        if ((p = tab[i = (n - 1) & hash]) == null)//这里的n表示数组长度16
       。。。。。。。。。。。。。。
  }

计算过程如下所示:

​ 说明:

​ 1)key.hashCode();返回散列值也就是hashcode。假设随便生成的一个值。

​ 2)n表示数组初始化的长度是16

​ 3)&(按位与运算):运算规则:相同的二进制数位上,都是1的时候,结果为1,否则为零。

​ 4)^(按位异或运算):运算规则:相同的二进制数位上,数字相同,结果为0,不同为1。

image-20191114193730911

简单来说就是:

  • 高16 bit 不变,低16 bit 和高16 bit 做了一个异或(得到的 hashcode 转化为32位二进制,前16位和后16位低16 bit和高16 bit做了一个异或)

    问题:为什么要这样操作呢?

    如果当n即数组长度很小,假设是16的话,那么n-1即为 ---》1111 ,这样的值和hashCode()直接做按位与操作,实际上只使用了哈希值的后4位。如果当哈希值的高位变化很大,低位变化很小,这样就很容易造成哈希冲突了,所以这里把高低位都利用起来,从而减少了哈希冲突

    例如上述:
    hashCode()值:     1111 1111 1111 1111 1111 0000 1110 1010
    				&
    n-1即16-1--》15:  。。。。。。。。。。。。。。。。。。。。。。1111
    -------------------------------------------------------------------
    				  0000 0000 0000 0000 0000 0000 0000 1010 ----》10作为索引
    其实就是将hashCode值作为数组索引,那么如果下个高位hashCode不一致,低位一致的话,就会造成计算的索引还是10,从而造成了哈希冲突了。降低性能。
    
  • (n-1) & hash = -> 得到下标 (n-1) n表示数组长度16,n-1就是15

  • 取余数本质是不断做除法,把剩余的数减去,运算效率要比位运算低。

putVal()

现在看putVal()方法,看看它到底做了什么。

主要参数:

  • hash key的hash值
  • key 原始Key
  • value 要存放的值
  • onlyIfAbsent 如果true代表不更改现有的值(putIfAbsent方法中传入true,表示不覆盖相同key )
  • evict 如果为false表示table为创建状态

putVal()方法源代码如下所示:

public V put(K key, V value) 
{
        return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
   
    if ((tab = table) == null || (n = tab.length) == 0) //第一次put操作扩容时才会new数组
        n = (tab = resize()).length;
  
    	//i = (n - 1) & hash :计算数组的索引赋值给i
    	//p = tab[i = (n - 1) & hash]表示获取计算出的位置的node数据,赋值给节点p
    if ((p = tab[i = (n - 1) & hash]) == null)
        //如果当前桶没有哈希碰撞冲突,则直接创建一个新的节点(存入键值对)存入到桶中
        tab[i] = newNode(hash, key, value, null);
    else {
         // 执行else说明tab[i]不等于null,表示这个位置已经有值了。
        Node<K,V> e; K k;
        
        // 1.比较桶中第一个元素(数组中的结点)的hash值和key是否相等
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            
                e = p; // 两个元素哈希值相等,并且key的值也相等将旧的元素赋值给e,用e来记录
        				// 最后用新值替换旧值,并将旧值e返回
        
        // 2.hash值不相等或者key不相等;判断p是否为红黑树结点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 3.说明是链表节点
        else {          	
            // 采用循环遍历的方式,先判断链表中是否有重复的key,遍历到最后节点然后插入
            for (int binCount = 0; ; ++binCount) {
               						
                // 3.1 p.next是否等于null,说明到达了链表的尾部还没有找到重复的key,将该键值对插入链表中尾部
                if ((e = p.next) == null) { // e = p.next 获取p的下一个元素赋值给e                   
                    p.next = newNode(hash, key, value, null);
  
                    // binCount从0开始,直至8-1即7,即循环到第8个节点元素,开始进行树化
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 
                        //转换为红黑树c,此方法第一步先判断数组长度是否大于64,否则进行扩容操作,而不是树化
                        treeifyBin(tab, hash); 
                    // 跳出循环
                    break;
                }
                 
                // 3.2 执行到这里说明,还未到链表尾部。继续判断链表中结点的key值与插入的元素的key值是否相等
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等:说明要添加的元素和链表中已存在相同key,则跳出for循环执行最后的if(e!= null)
                        break;
                    p = e;//将p节点的next节点e作为下次循环的p节点,来进行不断循环操作上面的判断操作
                	// 说明新添加的元素和当前节点不相等,继续查找下一个节点
                	// 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表                 
            }
        }

        // 对应上述步骤1中找到了重复的键
        // 这里完成了put方法的修改功能:把该键的值变为新的值,并返回旧值
        if (e != null) { 
            V oldValue = e.value; // 步骤1将旧值赋给了e
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)// putIfAbsent方法中传入true,表示不覆盖相同key         
                e.value = value;//用新值替换旧值
            afterNodeAccess(e);//LinkedHashMap中重写调用的方法    
            return oldValue; // 返回旧值
        }
    }
    //修改记录次数,在并发情况下做判断,failfast机制,立即抛异常
    ++modCount;
    // 判断实际大小是否大于threshold阈值,如果超过则扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);//LinkedHashMap中重写调用的方法
    return null;
} 

4.3.2将链表转换为红黑树的treeifyBin方法

节点添加完成之后判断此时节点个数是否大于TREEIFY_THRESHOLD临界值8,如果大于则将链表转换为红黑树,转换红黑树的方法 treeifyBin,整体代码如下:

if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
   //转换为红黑树 tab表示数组名  hash表示哈希值
   treeifyBin(tab, hash);

treeifyBin方法如下所示:

  /**
   * Replaces all linked nodes in bin at index for given hash unless
   * table is too small, in which case resizes instead.
     替换指定哈希表的索引处桶中的所有链接节点,除非表太小,否则将修改大小。
     Node<K,V>[] tab = tab 数组名
     int hash = hash表示哈希值
  */
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        /*
        	如果当前数组为空或者数组的长度小于进行树形化的阈值(MIN_TREEIFY_CAPACITY = 64),
        	就去扩容。而不是将节点变为红黑树。
        	目的:如果数组很小,那么转换红黑树,然后遍历效率要低一些。这时进行扩容,那么重新计算哈希值
        	,链表长度有可能就变短了,数据会放到数组中,这样相对来说效率高一些。
        */
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            //扩容方法
            resize();
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            /*
            	1)执行到这里说明哈希表中的数组长度大于阈值64,开始进行树形化
            	2)e = tab[index = (n - 1) & hash]表示将数组中的元素取出赋值给e,e是哈希表中指定位					置桶里的链表节点,从第一个开始
            */
            //hd:红黑树的头结点   tl :红黑树的尾结点
            TreeNode<K,V> hd = null, tl = null;
            do {
                //新创建一个树的节点,内容和当前链表节点e一致
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    //将新创键的p节点赋值给红黑树的头结点
                    hd = p;
                else {
                    /*
                    	 p.prev = tl:将上一个节点p赋值给现在的p的前一个节点
                    	 tl.next = p;将现在节点p作为树的尾结点的下一个节点
                    */
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
                /*
                	e = e.next 将当前节点的下一个节点赋值给e,如果下一个节点不等于null
                	则回到上面继续取出链表中节点转换为红黑树
                */
            } while ((e = e.next) != null);
            /*
            	让桶中的第一个元素即数组中的元素指向新建的红黑树的节点,以后这个桶里的元素就是红黑树
            	而不是链表数据结构了
            */
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

小结:上述操作一共做了如下几件事:

1.根据哈希表中元素个数确定是扩容还是树形化

2.如果是树形化遍历桶中的元素,创建相同个数的树形节点,复制内容,建立起联系

3.然后让桶中的第一个元素指向新创建的树根节点,替换桶的链表内容为树形化内容

4.3.3扩容方法_resize

4.3.3.1扩容机制

想要了解HashMap的扩容机制你要有这两个问题

  • 1.什么时候才需要扩容
  • 2.HashMap的扩容是什么

1.什么时候才需要扩容

当HashMap中的元素个数超过数组大小(数组长度)*loadFactor(负载因子)时,就会进行数组扩容,loadFactor的默认值(DEFAULT_LOAD_FACTOR)是0.75,这是一个折中的取值。也就是说,默认情况下,数组大小为16,那么当HashMap中的元素个数超过16×0.75=12(这个值就是阈值或者边界值threshold值)的时候,就把数组的大小扩展为2×16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常耗性能的操作,所以如果我们已经预知HashMap中元素的个数,那么预知元素的个数能够有效的提高HashMap的性能。

补充:

当HashMap中的其中一个链表的对象个数如果达到了8个,此时如果数组长度没有达到64,那么HashMap会先扩容解决,如果已经达到了64,那么这个链表会变成红黑树,节点类型由Node变成TreeNode类型。当然,如果映射关系被移除后,下次执行resize方法时判断树的节点个数低于6,也会再把树转换为链表。

2.HashMap的扩容是什么

进行扩容,会伴随着一次重新hash分配,并且会遍历hash表中所有的元素,是非常耗时的。在编写程序中,要尽量避免resize。

HashMap在进行扩容时,使用的rehash方式非常巧妙,因为每次扩容都是翻倍,与原来计算的 (n-1)&hash的结果相比,只是多了一个bit位,所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。

怎么理解呢?例如我们从16扩展为32时,具体的变化如下所示:

image-20191117110812839

因此元素在重新计算hash之后,因为n变为2倍,那么n-1的标记范围在高位多1bit(红色),因此新的index就会发生这样的变化:

image-20191117110934974

说明:5是假设计算出来的原来的索引。这样就验证了上述所描述的:扩容之后所以节点要么就在原来的位置,要么就被分配到"原位置+旧容量"这个位置。

因此,我们在扩充HashMap的时候,不需要重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就可以了,是0的话索引没变,是1的话索引变成“原索引+oldCap(原位置+旧容量)”。可以看看下图为16扩充为32的resize示意图:

image-20191117111211630

正是因为这样巧妙的rehash方式,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,在resize的过程中保证了rehash之后每个桶上的节点数一定小于等于原来桶上的节点数,保证了rehash之后不会出现更严重的hash冲突,均匀的把之前的冲突的节点分散到新的桶中了。

4.3.3.2源码resize方法的解读

下面是代码的具体实现:

final Node<K,V>[] resize() {
    //得到当前数组
    Node<K,V>[] oldTab = table;
    //如果当前数组等于null长度返回0,否则返回当前数组的长度
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    //当前阀值点 默认是12(16*0.75)
    int oldThr = threshold;
    int newCap, newThr = 0;
    //如果老的数组长度大于0
    //开始计算扩容后的大小
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            //修改阈值为int的最大值
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        /*
        	没超过最大值,就扩充为原来的2倍
        	1)(newCap = oldCap << 1) < MAXIMUM_CAPACITY 扩大到2倍之后容量要小于最大容量
        	2)oldCap >= DEFAULT_INITIAL_CAPACITY 原数组长度大于等于数组初始化长度16
        */
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            //阈值扩大一倍
            newThr = oldThr << 1; // double threshold
    }
    //老阈值点大于0 直接赋值
    else if (oldThr > 0) // 老阈值赋值给新的数组长度
        newCap = oldThr;
    else {// 直接使用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;//16
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize最大上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    //新的阀值 默认原来是12 乘以2之后变为24
    threshold = newThr;
    //创建新的哈希表
    @SuppressWarnings({"rawtypes","unchecked"})
    //newCap是新的数组长度--》32
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    //判断旧数组是否等于空
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        //遍历旧的哈希表的每个桶,重新计算桶里元素的新位置
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                //原来的数据赋值为null 便于GC回收
                oldTab[j] = null;
                //判断数组是否有下一个引用
                if (e.next == null)
                    //没有下一个引用,说明不是链表,当前桶上只有一个键值对,直接插入
                    newTab[e.hash & (newCap - 1)] = e;
                //判断是否是红黑树
                else if (e instanceof TreeNode)
                    //说明是红黑树来处理冲突的,则调用相关方法把树分开
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // 采用链表处理冲突
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    //通过上述讲解的原理来计算节点的新位置
                    do {
                        // 原索引
                        next = e.next;
                     	//这里来判断如果等于true e这个节点在resize之后不需要移动位置
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

4.3.4 删除方法(remove)

理解了put方法之后,remove方法已经没什么难度了,所以重复的内容就不再做详细介绍了。

删除的话就是首先先找到元素的位置,如果是链表就遍历链表找到元素之后删除。如果是用红黑树就遍历树然后找到之后做删除,树小于6的时候要转链表。

删除remove方法:

//remove方法的具体实现在removeNode方法中,所以我们重点看下removeNode方法
public V remove(Object key) {
        Node<K,V> e;
        return (e = removeNode(hash(key), key, null, false, true)) == null ?
            null : e.value;
    }

removeNode方法:

final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
    	//根据hash找到位置 
    	//如果当前key映射到的桶不为空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) {
            Node<K,V> node = null, e; K k; V v;
            //如果桶上的节点就是要找的key,则将node指向该节点
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p;
            else if ((e = p.next) != null) {
                //说明节点存在下一个节点
                if (p instanceof TreeNode)
                    //说明是以红黑树来处理的冲突,则获取红黑树要删除的节点
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else {
                    //判断是否以链表方式处理hash冲突,是的话则通过遍历链表来寻找要删除的节点
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //比较找到的key的value和要删除的是否匹配
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                //通过调用红黑树的方法来删除节点
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p)
                    //链表删除
                    tab[index] = node.next;
                else
                    p.next = node.next;
                //记录修改次数
                ++modCount;
                //变动的数量
                --size;
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

4.3.5查找元素方法(get)

查找方法,通过元素的Key找到Value。

代码如下:

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

get方法主要调用的是getNode方法,代码如下:


final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    //如果哈希表不为空并且key对应的桶上不为空
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        /* 
        	判断数组元素是否相等
        	根据索引的位置检查第一个元素
        	注意:总是检查第一个元素
        */
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 如果不是第一个元素,判断是否有后续节点
        if ((e = first.next) != null) {
            // 判断是否是红黑树,是的话调用红黑树中的getTreeNode方法获取节点
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                // 不是红黑树的话,那就是链表结构了,通过循环的方法判断链表中是否存在该key
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

小结:

1.get方法实现的步骤:

​ 1)通过hash值获取该key映射到的桶

​ 2)桶上的key就是要查找的key,则直接找到并返回

​ 3)桶上的key不是要找的key,则查看后续的节点:

​ a:如果后续节点是红黑树节点,通过调用红黑树的方法根据key获取value

​ b:如果后续节点是链表节点,则通过循环遍历链表根据key获取value

2.上述红黑树节点调用的是getTreeNode方法通过树形节点的find方法进行查找:

 final TreeNode<K,V> getTreeNode(int h, Object k) {
            return ((parent != null) ? root() : this).find(h, k, null);
 }
 final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
            TreeNode<K,V> p = this;
            do {
                int ph, dir; K pk;
                TreeNode<K,V> pl = p.left, pr = p.right, q;
                if ((ph = p.hash) > h)
                    p = pl;
                else if (ph < h)
                    p = pr;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;//找到之后直接返回
                else if (pl == null)
                    p = pr;
                else if (pr == null)
                    p = pl;
                else if ((kc != null ||
                          (kc = comparableClassFor(k)) != null) &&
                         (dir = compareComparables(kc, k, pk)) != 0)
                    p = (dir < 0) ? pl : pr;
                //递归查找
                else if ((q = pr.find(h, k, kc)) != null)
                    return q;
                else
                    p = pl;
            } while (p != null);
            return null;
        }

3.查找红黑树,由于之前添加时已经保证这个树是有序的了,因此查找时基本就是折半查找,效率更高。

4.这里和插入时一样,如果对比节点的哈希值和要查找的哈希值相等,就会判断key是否相等,相等就直接返回。不相等就从子树中递归查找。

​ 若为树,则在树中通过key.equals(k)查找,O(logn)

​ 若为链表,则在链表中通过key.equals(k)查找,O(n)。

4.3.6遍历HashMap集合几种方式

1、分别遍历Key和Values

image-20191117160455507

2、使用Iterator迭代器迭代

image-20191117160627369

3、通过get方式(不建议使用)

image-20191117160733756

说明:根据阿里开发手册,不建议使用这种方式,因为迭代两次。keySet获取Iterator一次,还有通过get又迭代一次。降低性能。

4.jdk8以后使用Map接口中的默认方法:

default void forEach(BiConsumer<? super K,? super V> action) 
BiConsumer接口中的方法:
	void accept​(T t, U u) 对给定的参数执行此操作。  
		参数 
            t - 第一个输入参数 
            u - 第二个输入参数 

遍历代码:

public class Demo02 {
    public static void main(String[] args) {
        HashMap<String,String> m1 = new HashMap();
        m1.put("001", "zhangsan");
        m1.put("002", "lisi");
        m1.forEach((key,value)->{
            System.out.println(key+"---"+value);
        });
    }
}

5.如何设计多个非重复的键值对要存储HashMap的初始化?

5.1HashMap的初始化问题描述

​ 如果我们确切的知道我们有多少键值对需要存储,那么我们在初始化HashMap的时候就应该指定它的容量,以防止HashMap自动扩容,影响使用效率。

​ 默认情况下HashMap的容量是16,但是,如果用户通过构造函数指定了一个数字作为容量,那么Hash会选择大于该数字的第一个2的幂作为容量。(3->4、7->8、9->16) .这点我们在上述已经进行过讲解。

《阿里巴巴Java开发手册》中建议我们设置HashMap的初始化容量。

image-20220521205828887

那么,为什么要这么建议?你有想过没有。

当然,以上建议也是有理论支撑的。我们上面介绍过,HashMap的扩容机制,就是当达到扩容条件时会进行扩容。HashMap的扩容条件就是当HashMap中的元素个数(size)超过临界值(threshold)时就会自动扩容。在HashMap中,threshold = loadFactor * capacity。

所以,如果我们没有设置初始容量大小,随着元素的不断增加,HashMap会有可能发生多次扩容,而HashMap中的扩容机制决定了每次扩容都需要重建hash表,是非常影响性能的。

但是设置初始化容量,设置的数值不同也会影响性能,那么当我们已知HashMap中即将存放的KV个数的时候,容量设置成多少为好呢?

5.2HashMap中容量的初始化

当我们使用HashMap(int initialCapacity)来初始化容量的时候,jdk会默认帮我们计算一个相对合理的值当做初始容量。

那么,是不是我们只需要把已知的HashMap中即将存放的元素个数直接传给initialCapacity就可以了呢?

关于这个值的设置,在《阿里巴巴Java开发手册》有以下建议:

image-20220521205317398

也就是说,如果我们设置的默认值是7,经过Jdk处理之后,会被设置成8,但是,这个HashMap在元素个数达到 8*0.75 = 6的时候就会进行一次扩容,这明显是我们不希望见到的。我们应该尽量减少扩容。原因也已经分析过。

如果我们通过initialCapacity/ 0.75F + 1.0F计算,7/0.75 + 1 = 10 ,10经过Jdk处理之后,会被设置成16,这就大大的减少了扩容的几率。

当HashMap内部维护的哈希表的容量达到75%时(默认情况下),会触发rehash,而rehash的过程是比较耗费时间的。所以初始化容量要设置成initialCapacity/0.75 + 1的话,可以有效的减少冲突也可以减小误差。

所以,当我们明确知道HashMap中元素的个数 size 的时候,把默认容量设置成 **size / 0.75F + 1.0F **是一个在性能上相对好的选择,但是同时也会牺牲些内存。

我们想要在代码中创建一个HashMap的时候,如果我们已知这个Map中即将存放的元素个数,给HashMap设置初始容量可以在一定程度上提升效率。

但是,JDK并不会直接拿用户传进来的数字当做默认容量,而是会进行一番运算,最终得到一个2的幂。原因也已经分析过。

但是,为了最大程度的避免扩容带来的性能消耗,我们建议可以把默认容量的数字设置成 **size / 0.75F + 1.0F **

posted on 2022-03-07 21:32  freyhe  阅读(42)  评论(0编辑  收藏  举报