ES(文档,DSL)

文档操作#

有了索引库,接下来就可以向索引库中添加数据了。

Elasticsearch中的数据其实就是JSON风格的文档。操作文档自然保护等几种常见操作,我们分别来学习。

1.新增语法#

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
}

java中新增文档

 /**
     * 新增文档
     *
     * @throws IOException
     */
    @Test
    void testConnect() throws IOException {
        // 从服务中获取Item对象
        Item item = iItemService.getById("317578");

        item.setName("靠你娘");
        // 创建索引请求,指定索引名称和文档ID
        IndexRequest request = new IndexRequest("items").id(item.getId().toString());

        // 创建ItemDTO2对象,并拷贝Item对象的属性
        ItemDTO2 itemDTO2 = new ItemDTO2();
        BeanUtils.copyProperties(item, itemDTO2);  // 直接拷贝属性到 itemDTO2

        // 将 itemDTO2 转换为 JSON 字符串
//        String jsonString = JSONObject.toJSONString(itemDTO2);
        String jsonString = JSONObject.toJSONString(itemDTO2);

        // 设置请求的JSON内容
        request.source(jsonString, XContentType.JSON);

        // 执行索引请求,添加文档到索引中
        IndexResponse index = client.index(request, RequestOptions.DEFAULT);

        // 你可以根据需要打印或验证索引响应结果
        System.out.println("Index Response: " + index.getId());
    }

2.查询文档#

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

GET /{索引库名称}/_doc/{id}
    /**
     * 查询文档
     *
     * @throws IOException
     */
    @Test
    public void get() throws IOException {
        GetRequest getRequest = new GetRequest("items", "317578");
        GetResponse response = client.get(getRequest, RequestOptions.DEFAULT);
        String sourceAsString = response.getSourceAsString();
        log.info("{}", sourceAsString);
    }

3.删除文档#

DELETE /{索引库名}/_doc/id值

4.修改文档#

修改有两种方式:

  • 全量修改:直接覆盖原来的文档

  • 局部修改:修改文档中的部分字段

1.全量修改#

全量修改是覆盖原来的文档,其本质是两步操作:

  • 根据指定的id删除文档

  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

2.局部修改#

局部修改是只修改指定id匹配的文档中的部分字段。

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

java中代码

    /**
     * 局部修改
     *
     * @throws IOException
     */
    @Test
    public void update() throws IOException {
        UpdateRequest request = new UpdateRequest("items", "317578");
        request.doc("name", "密码箱", "price", 38900);
        client.update(request, RequestOptions.DEFAULT);
    }

5.批量导入#

java中批量导入代码

/**
     * 批量导入
     */
    @Test
    public void addList() throws IOException {
        int pageNo = 1;
        int pageSize = 1000;

        while (true) {
            Page<Item> page = iItemService.lambdaQuery()
                    .eq(Item::getStatus, 1).page(new Page<>(pageNo, pageSize));
            List<Item> items = page.getRecords();

            if (CollUtils.isEmpty(
                    items)) {
                log.info("没有更多记录可处理,退出");
                break; // 更清晰的退出条件
            }

            log.info("第{}次处理,当前页记录数: {}", pageNo, items.size());
            BulkRequest request = new BulkRequest("items");

            // 批量操作
            for (Item item : items) {
                ItemDTO2 itemDTO2 = new ItemDTO2();
                BeanUtils.copyProperties(item, itemDTO2);
                request.add(
                        new IndexRequest().id(item.getId().toString())
                                .source(JSONObject.toJSONString(itemDTO2), XContentType.JSON)
                );
            }

            // 执行批量操作并处理结果
            BulkResponse bulkResponse = client.bulk(request, RequestOptions.DEFAULT);
            if (bulkResponse.hasFailures()) {
                log.error("批量索引时发生错误: {}", bulkResponse.buildFailureMessage());
            } else {
                log.info("第{}次批量索引成功,共处理记录数: {}", pageNo, items.size());
            }

            // 下一页
            pageNo++;
        }
    }

DSL查询#

Elasticsearch的查询可以分为两大类:

  • 叶子查询(Leaf query clauses):一般是在特定的字段里查询特定值,属于简单查询,很少单独使用。

  • 复合查询(Compound query clauses):以逻辑方式组合多个叶子查询或者更改叶子查询的行为方式。

这里列举一些常见的,例如:

  • 全文检索查询(Full Text Queries):利用分词器对用户输入搜索条件先分词,得到词条,然后再利用倒排索引搜索词条。例如:

    • match

    • multi_match

  • 精确查询(Term-level queries):不对用户输入搜索条件分词,根据字段内容精确值匹配。但只能查找keyword、数值、日期、boolean类型的字段。例如:

    • ids

    • term

    • range

  • 地理坐标查询:用于搜索地理位置,搜索方式很多,例如:

    • geo_bounding_box:按矩形搜索

    • geo_distance:按点和半径搜索

1.叶子查询#

1.全文检索查询#

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "字段名": "搜索条件"
    }
  }
}

java代码

@Test
void testMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

与match类似的还有multi_match,区别在于可以同时对多个字段搜索,而且多个字段都要满足

GET /{索引库名}/_search
{
  "query": {
    "multi_match": {
      "query": "搜索条件",
      "fields": ["字段1", "字段2"]
    }
  }
}

java代码

@Test
void testMultiMatch() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.multiMatchQuery("脱脂牛奶", "name", "category"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

2.精确查询#

精确查询,英文是Term-level query,顾名思义,词条级别的查询。也就是说不会对用户输入的搜索条件再分词,而是作为一个词条,与搜索的字段内容精确值匹配。因此推荐查找keyword、数值、日期、boolean类型的字段。

GET /{索引库名}/_search
{
  "query": {
    "term": {
      "字段名": {
        "value": "搜索条件"
      }
    }
  }
}

java中代码

@Test
void testTerm() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.termQuery("brand", "华为"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

range是范围查询,对于范围筛选的关键字有:

  • gte:大于等于

  • gt:大于

  • lte:小于等于

  • lt:小于

GET /{索引库名}/_search
{
  "query": {
    "range": {
      "字段名": {
        "gte": {最小值},
        "lte": {最大值}
      }
    }
  }
}

java中代码

@Test
void testRange() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    request.source().query(QueryBuilders.rangeQuery("price").gte(10000).lte(30000));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

2.复合查询#

1.算分函数查询#

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

从elasticsearch5.1开始,采用的相关性打分算法是BM25算法,公式如下:

基本语法

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果

示例:给IPhone这个品牌的手机算分提高十倍,分析如下:

  • 过滤条件:品牌必须为IPhone

  • 算分函数:常量weight,值为10

  • 算分模式:相乘multiply

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是Iphone
            "term": {
              "brand": "Iphone"
            }
          },
          "weight": 10 // 算分权重为2
        }
      ],
      "boost_mode": "multipy" // 加权模式,求乘积
    }
  }
}

2.bool查询#

bool查询,即布尔查询。就是利用逻辑运算来组合一个或多个查询子句的组合。bool查询支持的逻辑运算有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

GET /items/_search
{
  "query": {
    "bool": {
      "must": [
        {"match": {"name": "手机"}}
      ],
      "should": [
        {"term": {"brand": { "value": "vivo" }}},
        {"term": {"brand": { "value": "小米" }}}
      ],
      "must_not": [
        {"range": {"price": {"gte": 2500}}}
      ],
      "filter": [
        {"range": {"price": {"lte": 1000}}}
      ]
    }
  }
}

java中代码

@Test
void testBool() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.准备bool查询
    BoolQueryBuilder bool = QueryBuilders.boolQuery();
    // 2.2.关键字搜索
    bool.must(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.3.品牌过滤
    bool.filter(QueryBuilders.termQuery("brand", "德亚"));
    // 2.4.价格过滤
    bool.filter(QueryBuilders.rangeQuery("price").lte(30000));
    request.source().query(bool);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

3.排序#

排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。不过分词字段无法排序,能参与排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "排序字段": {
        "order": "排序方式asc和desc"
      }
    }
  ]
}

4.分页#

1.基础分页#

elasticsearch中通过修改fromsize参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档
GET /items/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10,  // 每页文档数量,默认10
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]
}

2.深度分页#

elasticsearch的数据一般会采用分片存储,也就是把一个索引中的数据分成N份,存储到不同节点上。这种存储方式比较有利于数据扩展,但给分页带来了一些麻烦。
比如一个索引库中有100000条数据,分别存储到4个分片,每个分片25000条数据。现在每页查询10条,查询第99页。

GET /items/_search
{
  "from": 990, // 从第990条开始查询
  "size": 10, // 每页查询10条
  "sort": [
    {
      "price": "asc"
    }
  ]
}

java中代码

@Test
void testPageAndSort() throws IOException {
    int pageNo = 1, pageSize = 5;

    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.搜索条件参数
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.排序参数
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页参数
    request.source().from((pageNo - 1) * pageSize).size(pageSize);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

5.高亮#

1.高亮原理#

css样式肯定是前端实现页面的时候写好的,但是前端编写页面的时候是不知道页面要展示什么数据的,不可能给数据加标签。而服务端实现搜索功能,要是有elasticsearch做分词搜索,是知道哪些词条需要高亮的。因此词条的高亮标签肯定是由服务端提供数据的时候已经加上的

因此实现高亮的思路就是:

  • 用户输入搜索关键字搜索数据

  • 服务端根据搜索关键字到elasticsearch搜索,并给搜索结果中的关键字词条添加html标签

  • 前端提前给约定好的html标签添加CSS样式

2.实现高亮#

GET /{索引库名}/_search
{
  "query": {
    "match": {
      "搜索字段": "搜索关键字"
    }
  },
  "highlight": {
    "fields": {
      "高亮字段名称": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

注意

  • 搜索必须有查询条件,而且是全文检索类型的查询条件,例如match

  • 参与高亮的字段必须是text类型的字段

  • 默认情况下参与高亮的字段要与搜索字段一致,除非添加:required_field_match=false

java代码实现高亮

高亮查询与前面的查询有两点不同:

  • 条件同样是在request.source()中指定,只不过高亮条件要基于HighlightBuilder来构造

  • 高亮响应结果与搜索的文档结果不在一起,需要单独解析

@Test
void testHighlight() throws IOException {
    // 1.创建Request
    SearchRequest request = new SearchRequest("items");
    // 2.组织请求参数
    // 2.1.query条件
    request.source().query(QueryBuilders.matchQuery("name", "脱脂牛奶"));
    // 2.2.高亮条件
    request.source().highlighter(
            SearchSourceBuilder.highlight()
                    .field("name")
                    .preTags("<em>")
                    .postTags("</em>")
    );
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);
}

代码解读:

  • 3、4步:从结果中获取_sourcehit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为ItemDoc对象

  • 5步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值

  • 5.1步:从Map中根据高亮字段名称,获取高亮字段值对象HighlightField

  • 5.2步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了

  • 最后:用高亮的结果替换ItemDoc中的非高亮结果

完整代码

private void handleResponse(SearchResponse response) {
    SearchHits searchHits = response.getHits();
    // 1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 2.遍历结果数组
    SearchHit[] hits = searchHits.getHits();
    for (SearchHit hit : hits) {
        // 3.得到_source,也就是原始json文档
        String source = hit.getSourceAsString();
        // 4.反序列化
        ItemDoc item = JSONUtil.toBean(source, ItemDoc.class);
        // 5.获取高亮结果
        Map<String, HighlightField> hfs = hit.getHighlightFields();
        if (CollUtils.isNotEmpty(hfs)) {
            // 5.1.有高亮结果,获取name的高亮结果
            HighlightField hf = hfs.get("name");
            if (hf != null) {
                // 5.2.获取第一个高亮结果片段,就是商品名称的高亮值
                String hfName = hf.getFragments()[0].string();
                item.setName(hfName);
            }
        }
        System.out.println(item);
    }
}

作者:freps

出处:https://www.cnblogs.com/freps/p/18473288

版权:本作品采用「署名-非商业性使用-相同方式共享 4.0 国际」许可协议进行许可。

posted @   LL。。。  阅读(73)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· Obsidian + DeepSeek:免费 AI 助力你的知识管理,让你的笔记飞起来!
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
more_horiz
keyboard_arrow_up dark_mode palette
选择主题
menu
点击右上角即可分享
微信分享提示