POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】
链接:
Greatest Common Increasing Subsequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2757 Accepted Submission(s): 855
Problem Description
This is a problem from ZOJ 2432.To make it easyer,you just need output the length of the subsequence.
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
output print L - the length of the greatest common increasing subsequence of both sequences.
Sample Input
1 5 1 4 2 5 -12 4 -12 1 2 4
Sample Output
2
Source
Recommend
lcy
算法:
#include<stdio.h> #include<string.h> #include<algorithm> #include<iostream> using namespace std; const int maxn = 500+50; int dp[maxn][maxn]; int a[maxn],b[maxn]; int m,n; /**** 求序列 A 长度为 N 和序列 B 长度为 M 的 LCS 序列下标从 1 开始 */ int LCS() { for(int i = 1; i <= n; i++) { int tmp = 0; //记录在i确定,且a[i]>b[j]的时候dp[i,j]的最大值 for(int j = 1; j <= m; j++) { dp[i][j] = dp[i-1][j]; if(a[i] > b[j]) { tmp = dp[i-1][j]; } else if(a[i] == b[j]) dp[i][j] = tmp+1; } } //for(int i = 1; i <= m; i++) printf("%d ", dp[n][i]); printf("\n"); int ans = 0; for(int i = 1; i <= m; i++) ans = max(ans, dp[n][i]); return ans; } int main() { int T; scanf("%d", &T); while(T--) { memset(dp,0,sizeof(dp)); scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); scanf("%d", &m); for(int j = 1; j <= m; j++) scanf("%d", &b[j]); printf("%d\n",LCS()); if(T != 0) printf("\n"); } }
内存优化:
#include<stdio.h> #include<string.h> #include<algorithm> #include<iostream> using namespace std; const int maxn = 500+50; int dp[maxn]; int a[maxn],b[maxn]; int m,n; /**** 求序列 A 长度为 N 和序列 B 长度为 M 的 LCS 序列下标从 1 开始 */ int LCS() { for(int i = 1; i <= n; i++) { int tmp = 0; for(int j = 1; j <= m; j++) { if(a[i] > b[j] && dp[j] > tmp) { tmp = dp[j]; } else if(a[i] == b[j]) dp[j] = tmp+1; } } int ans = 0; for(int i = 1; i <= m; i++) ans = max(ans, dp[i]); return ans; } int main() { int T; scanf("%d", &T); while(T--) { memset(dp,0,sizeof(dp)); scanf("%d", &n); for(int i = 1; i <= n; i++) scanf("%d", &a[i]); scanf("%d", &m); for(int j = 1; j <= m; j++) scanf("%d", &b[j]); printf("%d\n",LCS()); if(T != 0) printf("\n"); } }