浮点数运算后的精度问题

浮点数运算后的精度问题

在计算商品价格加减乘除时,偶尔会出现精度问题,一些常见的例子如下:

// 加法 =====================
0.1 + 0.2 = 0.30000000000000004
0.7 + 0.1 = 0.7999999999999999
0.2 + 0.4 = 0.6000000000000001

// 减法 =====================
1.5 - 1.2 = 0.30000000000000004
0.3 - 0.2 = 0.09999999999999998
 
// 乘法 =====================
19.9 * 100 = 1989.9999999999998
0.8 * 3 = 2.4000000000000004
35.41 * 100 = 3540.9999999999995

// 除法 =====================
0.3 / 0.1 = 2.9999999999999996
0.69 / 10 = 0.06899999999999999

为什么会产生:浮点数的存储

和其它语言如Java和Python不同,JavaScript中所有数字包括整数和小数都只有一种类型 — Number。它的实现遵循 IEEE 754 标准,使用64位固定长度来表示,也就是标准的 double 双精度浮点数

64位比特又可分为三个部分:

  • 符号位S:第 1 位是正负数符号位(sign),0代表正数,1代表负数

  • 指数位E:中间的 11 位存储指数(exponent),用来表示次方数

  • 尾数位M:最后的 52 位是尾数(mantissa),超出的部分自动进一舍零

 

Storage

浮点数的运算

那么JavaScript在计算0.1+0.2时到底发生了什么呢?

  首先,十进制的0.1和0.2会被转换成二进制的,但是由于浮点数用二进制表示时是无穷的:


0.1 -> 0.0001 1001 1001 1001...(1100循环)
0.2 -> 0.0011 0011 0011 0011...(0011循环)

IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持53位二进制位,所以两者相加之后得到二进制为:

0.0100110011001100110011001100110011001100110011001100 

因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了0.30000000000000004。所以在进行算术计算时会产生误差。

解决浮点数运算精度

 

 /*** method **
 *  add / subtract / multiply /divide
 * floatObj.add(0.1, 0.2) >> 0.3
 * floatObj.multiply(19.9, 100) >> 1990
 *
 */
var floatObj = function() {

    /*
     * 判断obj是否为一个整数
     */
    function isInteger(obj) {
        return Math.floor(obj) === obj
    }

    /*
     * 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100
     * @param floatNum {number} 小数
     * @return {object}
     *   {times:100, num: 314}
     */
    function toInteger(floatNum) {
        var ret = {times: 1, num: 0}
        if (isInteger(floatNum)) {
            ret.num = floatNum
            return ret
        }
        var strfi  = floatNum + ''
        var dotPos = strfi.indexOf('.')
        var len    = strfi.substr(dotPos+1).length
        var times  = Math.pow(10, len)
        var intNum = Number(floatNum.toString().replace('.',''))
        ret.times  = times
        ret.num    = intNum
        return ret
    }

    /*
     * 核心方法,实现加减乘除运算,确保不丢失精度
     * 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除)
     *
     * @param a {number} 运算数1
     * @param b {number} 运算数2
     * @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数
     * @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide)
     *
     */
    function operation(a, b, digits, op) {
        var o1 = toInteger(a)
        var o2 = toInteger(b)
        var n1 = o1.num
        var n2 = o2.num
        var t1 = o1.times
        var t2 = o2.times
        var max = t1 > t2 ? t1 : t2
        var result = null
        switch (op) {
            case 'add':
                if (t1 === t2) { // 两个小数位数相同
                    result = n1 + n2
                } else if (t1 > t2) { // o1 小数位 大于 o2
                    result = n1 + n2 * (t1 / t2)
                } else { // o1 小数位 小于 o2
                    result = n1 * (t2 / t1) + n2
                }
                return result / max
            case 'subtract':
                if (t1 === t2) {
                    result = n1 - n2
                } else if (t1 > t2) {
                    result = n1 - n2 * (t1 / t2)
                } else {
                    result = n1 * (t2 / t1) - n2
                }
                return result / max
            case 'multiply':
                result = (n1 * n2) / (t1 * t2)
                return result
            case 'divide':
                result = (n1 / n2) * (t2 / t1)
                return result
        }
    }

    // 加减乘除的四个接口
    function add(a, b, digits) {
        return operation(a, b, digits, 'add')
    }
    function subtract(a, b, digits) {
        return operation(a, b, digits, 'subtract')
    }
    function multiply(a, b, digits) {
        return operation(a, b, digits, 'multiply')
    }
    function divide(a, b, digits) {
        return operation(a, b, digits, 'divide')
    }

    // exports
    return {
        add: add,
        subtract: subtract,
        multiply: multiply,
        divide: divide
    }
}();


posted @ 2021-04-08 16:34  自由飞翔^_^  阅读(480)  评论(0编辑  收藏  举报