[CS61A] Lecture 4. Higher-Order Functions & Project 1: The Game of Hog

[CS61A] Lecture 4. Higher-Order Functions & Project 1: The Game of Hog

Lecture

Lecture 4. Higher-Order Functions

本节课介绍了高阶函数的概念与用法,主要包含如下内容:

  1. 从斐波那契数列说起,定义fib函数并使用迭代法解答。
  2. 面积公式,介绍正方形、五边形以及圆形的面积公式,它们的共同点是面积公式都可以变为:半径x半径x面积系数 的形式,因此将函数抽象成一个通用函数。
  3. 求和公式,西格玛求和公式可以通过一个包含序列长度n和元素计算函数term的方式表达,就此引入高阶函数的概念。
  4. 局部函数:在非全局作用域中定义的函数,例如make_adder函数接受一个整数n,返回用来+n的函数adder。
  5. 高阶函数:将函数作为参数或返回值的函数。
  6. 匿名函数:lambda函数,没有绑定名称的函数。
  7. return关键词:表示函数的结束,函数有两种返回的方法,一种是当满足条件时返回,另一个是判断所有不满足的条件后返回。
  8. 控制语句if、else,控制表达式and、or、x if a else b。

Q&A:lambda函数

Project 1: The Game of Hog

Phase 1: Rules of the Game

该项目要求充分运用python中控制与高阶函数相关的知识,实现一个hog游戏。

Problem 0 (0 pt)

要求在dice.py文件中实现一个公平的骰子。实际上是个判断题,判断多个骰子函数中哪个才是真正公平的骰子,答案是a) six_sided()。

执行测试用例:

$ python3 ok -q 00 -u
Question 0 > Suite 1 > Case 1
? 4
? 1
? 2
? 4
---------------------------------------------------------------------
Question 0 > Suite 2 > Case 1
? 0

Problem 1 (2 pt)

要求在hog.py中实现roll_dice函数。

roll_dice函数:

def roll_dice(num_rolls, dice=six_sided):
    """Simulate rolling the DICE exactly NUM_ROLLS > 0 times. Return the sum of
    the outcomes unless any of the outcomes is 1. In that case, return 1.

    num_rolls:  The number of dice rolls that will be made.
    dice:       A function that simulates a single dice roll outcome.
    """
    # These assert statements ensure that num_rolls is a positive integer.
    assert type(num_rolls) == int, 'num_rolls must be an integer.'
    assert num_rolls > 0, 'Must roll at least once.'
    # BEGIN PROBLEM 1
    res = [dice() for _ in range(num_rolls)]
    return 1 if 1 in res else sum(res)
    # END PROBLEM 1

执行测试用例:

$ python3 ok -q 01 -u
Question 1 > Suite 1 > Case 1
? 10
---------------------------------------------------------------------
Question 1 > Suite 1 > Case 2
? 1
---------------------------------------------------------------------
Question 1 > Suite 1 > Case 3
? 1
---------------------------------------------------------------------
Question 1 > Suite 1 > Case 5
? 1
? 6
---------------------------------------------------------------------
Question 1 > Suite 1 > Case 6
? 54
$ python3 ok -q 01
Test summary
    59 test cases passed! No cases failed.

Problem 2 (4 pt)

要求实现oink_points函数。

oink_points函数:

def oink_points(player_score, opponent_score):
    """Return the points scored by player due to Oink Points.

    player_score:   The total score of the current player.
    opponent_score: The total score of the other player.
    """
    ones = opponent_score%10
    tens = opponent_score//10%10
    return max(2*tens-ones, 1)

执行测试用例:

$ python3 ok -q 02 -u
Question 2 > Suite 1 > Case 1
? 1
---------------------------------------------------------------------
Question 2 > Suite 1 > Case 2
? 12
---------------------------------------------------------------------
Question 2 > Suite 1 > Case 3
? 1
$ python3 ok -q 02
Test summary
    34 test cases passed! No cases failed.

Problem 3 (2 pt)

要求实现take_turn函数。

take_turn函数:

def take_turn(num_rolls, player_score, opponent_score, dice=six_sided, goal=GOAL_SCORE):
    """Simulate a turn rolling NUM_ROLLS dice,
    which may be 0 in the case of a player using Oink Points.
    Return the points scored for the turn by the current player.

    num_rolls:       The number of dice rolls that will be made.
    player_score:    The total score of the current player.
    opponent_score:  The total score of the opponent.
    dice:            A function that simulates a single dice roll outcome.
    goal:            The goal score of the game.
    """
    # Leave these assert statements here; they help check for errors.
    assert type(num_rolls) == int, 'num_rolls must be an integer.'
    assert num_rolls >= 0, 'Cannot roll a negative number of dice in take_turn.'
    assert num_rolls <= 10, 'Cannot roll more than 10 dice.'
    assert max(player_score, opponent_score) < goal, 'The game should be over.'
    # BEGIN PROBLEM 3
    if num_rolls==0:
        return oink_points(player_score, opponent_score)
    return roll_dice(num_rolls, dice)
    # END PROBLEM 3

执行测试用例:

$ python3 ok -q 03 -u
Question 3 > Suite 1 > Case 1
? 9
---------------------------------------------------------------------
Question 3 > Suite 1 > Case 2
? 1
---------------------------------------------------------------------
Question 3 > Suite 1 > Case 3
? 7
---------------------------------------------------------------------
Question 3 > Suite 1 > Case 4
? 1
$ python3 ok -q 03
Test summary
    10 test cases passed! No cases failed.

Problem 4 (1 pt)

要求实现pigs_on_prime函数。

pigs_on_prime函数:

def pigs_on_prime(player_score, opponent_score):
    """Return the points scored by the current player due to Pigs on Prime.

    player_score:   The total score of the current player.
    opponent_score: The total score of the other player.
    """
    # BEGIN PROBLEM 4
    if not is_prime(player_score):
        return 0
    additional_score = 1
    while not is_prime(player_score+additional_score):
        additional_score+=1
    return additional_score
    # END PROBLEM 4

执行测试用例:

$ python3 ok -q 04 -u
Question 4 > Suite 1 > Case 1
? 0
---------------------------------------------------------------------
Question 4 > Suite 1 > Case 2
? 4
---------------------------------------------------------------------
Question 4 > Suite 1 > Case 3
? 0
---------------------------------------------------------------------
Question 4 > Suite 1 > Case 4
? 2
---------------------------------------------------------------------
Question 4 > Suite 1 > Case 5
? 2
$ python3 ok -q 04
Test summary
    105 test cases passed! No cases failed.

Phase 2: Playing the Game

Problem 5 (5 pt)

要求实现play函数。

play函数:

def play(strategy0, strategy1, score0=0, score1=0, dice=six_sided,
         goal=GOAL_SCORE, say=silence):
    """Simulate a game and return the final scores of both players, with Player
    0's score first, and Player 1's score second.

    A strategy is a function that takes two total scores as arguments (the
    current player's score, and the opponent's score), and returns a number of
    dice that the current player will roll this turn.

    strategy0:  The strategy function for Player 0, who plays first.
    strategy1:  The strategy function for Player 1, who plays second.
    score0:     Starting score for Player 0
    score1:     Starting score for Player 1
    dice:       A function of zero arguments that simulates a dice roll.
    goal:       The game ends and someone wins when this score is reached.
    say:        The commentary function to call every turn.
    """
    who = 0  # Who is about to take a turn, 0 (first) or 1 (second)
    leader = None  # To be used in problem 7
    # BEGIN PROBLEM 5
    while score0 < goal and score1 < goal:
        if who == 0:
            score0 += take_turn(strategy0(score0, score1), score0, score1, dice, goal)
            score0 += pigs_on_prime(score0, score1)
        else:
            score1 += take_turn(strategy1(score1, score0), score1, score0, dice, goal)
            score1 += pigs_on_prime(score1, score0)
        who = next_player(who)
    # END PROBLEM 5
    # (note that the indentation for the problem 7 prompt (***YOUR CODE HERE***) might be misleading)
    # BEGIN PROBLEM 7
    "*** YOUR CODE HERE ***"
    # END PROBLEM 7
    return score0, score1

执行测试用例:

$ python3 ok -q 05 -u
Question 5 > Suite 1 > Case 1
? 2
---------------------------------------------------------------------
Question 5 > Suite 1 > Case 2
? 1
---------------------------------------------------------------------
Question 5 > Suite 1 > Case 3
? 3
---------------------------------------------------------------------
Question 5 > Suite 2 > Case 1
? 106
? 10
---------------------------------------------------------------------
Question 5 > Suite 2 > Case 2
? 15
? 0
---------------------------------------------------------------------
Question 5 > Suite 3 > Case 1
? 87
? 108
$ python3 ok -q 05
Test summary
    111 test cases passed! No cases failed.

Problem 6 (2 pt)

要求实现announce_lead_changes函数。

announce_lead_changes函数:

def announce_lead_changes(score0, score1, last_leader=None):
    """A commentary function that announces when the leader has changed.

    >>> leader, message = announce_lead_changes(5, 0)
    >>> print(message)
    Player 0 takes the lead by 5
    >>> leader, message = announce_lead_changes(5, 12, leader)
    >>> print(message)
    Player 1 takes the lead by 7
    >>> leader, message = announce_lead_changes(8, 12, leader)
    >>> print(leader, message)
    1 None
    >>> leader, message = announce_lead_changes(8, 13, leader)
    >>> leader, message = announce_lead_changes(15, 13, leader)
    >>> print(message)
    Player 0 takes the lead by 2
    """
    # BEGIN PROBLEM 6
    if score0 == score1:
        leader = None
        changes = 0
    elif score0 < score1:
        leader = 1
        changes = score1-score0
    else:
        leader = 0
        changes = score0-score1
    return leader, f'Player {leader} takes the lead by {changes}' if leader != last_leader and leader != None else None
    # END PROBLEM 6

执行测试用例:

$ python3 ok -q 06 -u
Question 6 > Suite 1 > Case 1
? 1
---------------------------------------------------------------------
Question 6 > Suite 1 > Case 2
? 0
---------------------------------------------------------------------
Question 6 > Suite 1 > Case 3
? 0
$ python3 ok -q 06
Test summary
    4 test cases passed! No cases failed.

Problem 7 (2 pt)

要求更新play函数,

函数:

def play(strategy0, strategy1, score0=0, score1=0, dice=six_sided,
         goal=GOAL_SCORE, say=silence):
    """Simulate a game and return the final scores of both players, with Player
    0's score first, and Player 1's score second.

    A strategy is a function that takes two total scores as arguments (the
    current player's score, and the opponent's score), and returns a number of
    dice that the current player will roll this turn.

    strategy0:  The strategy function for Player 0, who plays first.
    strategy1:  The strategy function for Player 1, who plays second.
    score0:     Starting score for Player 0
    score1:     Starting score for Player 1
    dice:       A function of zero arguments that simulates a dice roll.
    goal:       The game ends and someone wins when this score is reached.
    say:        The commentary function to call every turn.
    """
    who = 0  # Who is about to take a turn, 0 (first) or 1 (second)
    leader = None  # To be used in problem 7
    # BEGIN PROBLEM 5
    while score0 < goal and score1 < goal:
        if who == 0:
            score0 += take_turn(strategy0(score0, score1), score0, score1, dice, goal)
            score0 += pigs_on_prime(score0, score1)
        else:
            score1 += take_turn(strategy1(score1, score0), score1, score0, dice, goal)
            score1 += pigs_on_prime(score1, score0)
        who = next_player(who)
    # END PROBLEM 5
    # (note that the indentation for the problem 7 prompt (***YOUR CODE HERE***) might be misleading)
    # BEGIN PROBLEM 7
        leader, message = say(score0, score1, leader)
        print(message) if message else 0
    # END PROBLEM 7
    return score0, score1

执行测试用例:

$ python3 ok -q 07 -u
Question 7 > Suite 1 > Case 1
? 0
---------------------------------------------------------------------
Question 7 > Suite 2 > Case 3
(line 1)? 5 0
(line 2)? 5 5
(line 3)? 8 5
---------------------------------------------------------------------
Question 7 > Suite 2 > Case 4
(line 1)? 1 7
(line 2)? 2 7
(line 3)? 3 12
(line 4)? 4 12
(line 5)? 5 19
---------------------------------------------------------------------
Question 7 > Suite 3 > Case 1
(line 1)? 4 0
(line 2)? 4 12
(line 3)? 7 12
(line 4)? 7 24
---------------------------------------------------------------------
Question 7 > Suite 3 > Case 2
(line 1)? 3
(line 2)? 10
(line 3)? 14
(line 4)? 19
---------------------------------------------------------------------
Question 7 > Suite 3 > Case 3
(line 1)? * 3
(line 2)? ** 0
(line 3)? * 3
(line 4)? ** 3
(line 5)? * 7
(line 6)? ** 3
$ python3 ok -q 07
Test summary
    9 test cases passed! No cases failed.

Phase 3: Strategies of the Game

Problem 8 (2 pt)

实现make_averaged函数。

make_averaged函数:

def make_averaged(original_function, total_samples=1000):
    """Return a function that returns the average value of ORIGINAL_FUNCTION
    called TOTAL_SAMPLES times.

    To implement this function, you will have to use *args syntax, a new Python
    feature introduced in this project.  See the project description.

    >>> dice = make_test_dice(4, 2, 5, 1)
    >>> averaged_dice = make_averaged(roll_dice, 1000)
    >>> averaged_dice(1, dice)
    3.0
    """
    # BEGIN PROBLEM 8
    def inner(*args):
        return sum([original_function(*args) for _ in range(total_samples)])/total_samples
    return inner
    # END PROBLEM 8

执行测试用例:

$ python3 ok -q 08 -u
Question 8 > Suite 1 > Case 1
? 3
---------------------------------------------------------------------
Question 8 > Suite 1 > Case 2
? 0
---------------------------------------------------------------------
Question 8 > Suite 2 > Case 1
? 3.75
---------------------------------------------------------------------
Question 8 > Suite 2 > Case 2
? 6.0
$ python3 ok -q 08
Test summary
    7 test cases passed! No cases failed.

Problem 9 (2 pt)

实现max_scoring_num_rolls函数。

max_scoring_num_rolls函数:

def max_scoring_num_rolls(dice=six_sided, total_samples=1000):
    """Return the number of dice (1 to 10) that gives the highest average turn score
    by calling roll_dice with the provided DICE a total of TOTAL_SAMPLES times.
    Assume that the dice always return positive outcomes.

    >>> dice = make_test_dice(1, 6)
    >>> max_scoring_num_rolls(dice)
    1
    """
    # BEGIN PROBLEM 9
    new_roll_dice = make_averaged(roll_dice, total_samples)
    return max([(new_roll_dice(i, dice), i) for i in range(1, 11)], key=lambda x: x[0])[1]
    # END PROBLEM 9

执行测试用例:

$ python3 ok -q 09 -u
Question 9 > Suite 1 > Case 1
? 2
---------------------------------------------------------------------
Question 9 > Suite 2 > Case 1
? 10
---------------------------------------------------------------------
Question 9 > Suite 3 > Case 1
? 10
---------------------------------------------------------------------
Question 9 > Suite 3 > Case 2
? 1
---------------------------------------------------------------------
Question 9 > Suite 3 > Case 3
? 1
$ python3 ok -q 09
Test summary
    10 test cases passed! No cases failed.

Problem 10 (1 pt)

要求实现oink_points_strategy函数。

oink_points_strategy函数:

def oink_points_strategy(score, opponent_score, threshold=8, num_rolls=6):
    """This strategy returns 0 dice if that gives at least THRESHOLD points, and
    returns NUM_ROLLS otherwise.
    """
    # BEGIN PROBLEM 10
    return 0 if oink_points(score, opponent_score) >= threshold else num_rolls
    # END PROBLEM 10

执行测试用例:

$ python3 ok -q 10 -u
Question 10 > Suite 1 > Case 1
? 0
---------------------------------------------------------------------
Question 10 > Suite 1 > Case 2
? 5
---------------------------------------------------------------------
Question 10 > Suite 1 > Case 3
? 0
---------------------------------------------------------------------
Question 10 > Suite 1 > Case 4
? 4
---------------------------------------------------------------------
Question 10 > Suite 1 > Case 5
? 0
$ python3 ok -q 10
Test summary
    106 test cases passed! No cases failed.

Problem 11 (1 pt)

要求实现pigs_on_prime_strategy函数。

pigs_on_prime_strategy函数:

def pigs_on_prime_strategy(score, opponent_score, threshold=8, num_rolls=6):
    """This strategy returns 0 dice when this would result in Pigs on Prime taking
    effect. It also returns 0 dice if it gives at least THRESHOLD points.
    Otherwise, it returns NUM_ROLLS.
    """
    # BEGIN PROBLEM 11
    additional = oink_points(score, opponent_score)
    return 0 if pigs_on_prime(score+additional, opponent_score) != 0 or additional >= threshold else num_rolls
    # END PROBLEM 11

执行测试用例:

$ python3 ok -q 11 -u
Question 11 > Suite 1 > Case 1
? 0
---------------------------------------------------------------------
Question 11 > Suite 1 > Case 2
? 6
---------------------------------------------------------------------
Question 11 > Suite 1 > Case 3
? 0
---------------------------------------------------------------------
Question 11 > Suite 1 > Case 4
? 6
$ python3 ok -q 11
Test summary
    105 test cases passed! No cases failed.

Optional: Problem 12 (0 pt)

要求实现final_strategy函数,该题为开放题,思考怎样结合oink_points或pigs_on_prime策略,让玩家赢的概率才能够更大。

参考资料

CS61A Project 1: The Game of Hog:https://cs61a.org/proj/hog/

cs61a公开课视频:https://www.bilibili.com/video/BV1s3411G7yM

posted @ 2022-07-31 22:51  frankming  阅读(900)  评论(0编辑  收藏  举报