返回顶部 Fork me on GitHub

Hadoop案例(六)小文件处理(自定义InputFormat)

小文件处理(自定义InputFormat)

1.需求分析

无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案。将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value。

2.数据准备

one.txt

yongpeng weidong weinan
sanfeng luozong xiaoming

two.txt

longlong fanfan
mazong kailun yuhang yixin
longlong fanfan
mazong kailun yuhang yixin

three.txt

shuaige changmo zhenqiang 
dongli lingu xuanxuan

最终预期文件格式:

 

3.优化分析

小文件的优化无非以下几种方式:

(1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS

(2)在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并

(3)在mapreduce处理时,可采用CombineTextInputFormat提高效率

4.具体实现

本节采用自定义InputFormat的方式,处理输入小文件的问题。

(1)自定义一个类继承FileInputFormat

(2)改写RecordReader,实现一次读取一个完整文件封装为KV

(3)在输出时使用SequenceFileOutPutFormat输出合并文件

5.代码实现

(1)自定义InputFromat

package com.xyg.mapreduce.inputformat;

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

public class WholeFileInputformat extends FileInputFormat<NullWritable, BytesWritable>{

    @Override
    protected boolean isSplitable(JobContext context, Path filename) {
        return false;
    }
    
    @Override
    public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context)
            throws IOException, InterruptedException {
        // 1 定义一个自己的recordReader
        WholeRecordReader recordReader = new WholeRecordReader();
        
        // 2 初始化recordReader
        recordReader.initialize(split, context);
        
        return recordReader;
    }
}

(2)自定义RecordReader

package com.xyg.mapreduce.inputformat;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

public class WholeRecordReader extends RecordReader<NullWritable, BytesWritable> {
    private FileSplit split;
    private Configuration configuration;

    private BytesWritable value = new BytesWritable();
    private boolean processed = false;

    @Override
    public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException {
        // 获取传递过来的数据
        this.split = (FileSplit) split;
        configuration = context.getConfiguration();
    }

    @Override
    public boolean nextKeyValue() throws IOException, InterruptedException {
        
        if (!processed) {
            // 1 定义缓存
            byte[] contents = new byte[(int) split.getLength()];

            // 2 获取文件系统
            Path path = split.getPath();
            FileSystem fs = path.getFileSystem(configuration);

            // 3 读取内容
            FSDataInputStream fis = null;
            try {
                // 3.1 打开输入流
                fis = fs.open(path);
                
                // 3.2 读取文件内容
                IOUtils.readFully(fis, contents, 0, contents.length);
                
                // 3.3 输出文件内容
                value.set(contents, 0, contents.length);
            } catch (Exception e) {

            } finally {
                IOUtils.closeStream(fis);
            }
            
            processed = true;
            
            return true;
        }
        
        return false;
    }

    @Override
    public NullWritable getCurrentKey() throws IOException, InterruptedException {
        
        return NullWritable.get();
    }

    @Override
    public BytesWritable getCurrentValue() throws IOException, InterruptedException {
        
        return value;
    }

    @Override
    public float getProgress() throws IOException, InterruptedException {
        return processed?1:0;
    }

    @Override
    public void close() throws IOException {

    }
}

(3)InputFormatDriver处理流程

package com.xyg.mapreduce.inputformat;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.BytesWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
public class InputFormatDriver {

    static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> {
        private Text k = new Text();;

        @Override
        protected void map(NullWritable key, BytesWritable value, Context context)
                throws IOException, InterruptedException {

            // 获取切片信息
            InputSplit split = context.getInputSplit();
            // 获取切片路径
            Path path = ((FileSplit) split).getPath();
            // 根据切片路径获取文件名称
k.set(path.toString());

            // 文件名称为key
            context.write(k, value);
        }
    }

    public static void main(String[] args) throws Exception {
        args = new String[] { "e:/inputinputformat", "e:/output1" };

        Configuration conf = new Configuration();
        
        Job job = Job.getInstance(conf);
        job.setJarByClass(InputFormatDriver.class);
        job.setMapperClass(SequenceFileMapper.class);
        job.setNumReduceTasks(0);
        job.setInputFormatClass(WholeFileInputFormat.class);
        job.setOutputFormatClass(SequenceFileOutputFormat.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(BytesWritable.class);
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        boolean result = job.waitForCompletion(true);

        System.exit(result ? 0 : 1);
    }
}

 

posted @ 2018-06-02 10:18  Frankdeng  阅读(3411)  评论(0编辑  收藏  举报