Hadoop案例(六)小文件处理(自定义InputFormat)
小文件处理(自定义InputFormat)
1.需求分析
无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案。将多个小文件合并成一个文件SequenceFile,SequenceFile里面存储着多个文件,存储的形式为文件路径+名称为key,文件内容为value。
2.数据准备
one.txt
yongpeng weidong weinan
sanfeng luozong xiaoming
two.txt
longlong fanfan
mazong kailun yuhang yixin
longlong fanfan
mazong kailun yuhang yixin
three.txt
shuaige changmo zhenqiang
dongli lingu xuanxuan
最终预期文件格式:
3.优化分析
小文件的优化无非以下几种方式:
(1)在数据采集的时候,就将小文件或小批数据合成大文件再上传HDFS
(2)在业务处理之前,在HDFS上使用mapreduce程序对小文件进行合并
(3)在mapreduce处理时,可采用CombineTextInputFormat提高效率
4.具体实现
本节采用自定义InputFormat的方式,处理输入小文件的问题。
(1)自定义一个类继承FileInputFormat
(2)改写RecordReader,实现一次读取一个完整文件封装为KV
(3)在输出时使用SequenceFileOutPutFormat输出合并文件
5.代码实现
(1)自定义InputFromat
package com.xyg.mapreduce.inputformat; import java.io.IOException; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.JobContext; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; public class WholeFileInputformat extends FileInputFormat<NullWritable, BytesWritable>{ @Override protected boolean isSplitable(JobContext context, Path filename) { return false; } @Override public RecordReader<NullWritable, BytesWritable> createRecordReader(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { // 1 定义一个自己的recordReader WholeRecordReader recordReader = new WholeRecordReader(); // 2 初始化recordReader recordReader.initialize(split, context); return recordReader; } }
(2)自定义RecordReader
package com.xyg.mapreduce.inputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataInputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.RecordReader; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.input.FileSplit; public class WholeRecordReader extends RecordReader<NullWritable, BytesWritable> { private FileSplit split; private Configuration configuration; private BytesWritable value = new BytesWritable(); private boolean processed = false; @Override public void initialize(InputSplit split, TaskAttemptContext context) throws IOException, InterruptedException { // 获取传递过来的数据 this.split = (FileSplit) split; configuration = context.getConfiguration(); } @Override public boolean nextKeyValue() throws IOException, InterruptedException { if (!processed) { // 1 定义缓存 byte[] contents = new byte[(int) split.getLength()]; // 2 获取文件系统 Path path = split.getPath(); FileSystem fs = path.getFileSystem(configuration); // 3 读取内容 FSDataInputStream fis = null; try { // 3.1 打开输入流 fis = fs.open(path); // 3.2 读取文件内容 IOUtils.readFully(fis, contents, 0, contents.length); // 3.3 输出文件内容 value.set(contents, 0, contents.length); } catch (Exception e) { } finally { IOUtils.closeStream(fis); } processed = true; return true; } return false; } @Override public NullWritable getCurrentKey() throws IOException, InterruptedException { return NullWritable.get(); } @Override public BytesWritable getCurrentValue() throws IOException, InterruptedException { return value; } @Override public float getProgress() throws IOException, InterruptedException { return processed?1:0; } @Override public void close() throws IOException { } }
(3)InputFormatDriver处理流程
package com.xyg.mapreduce.inputformat; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.InputSplit; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat; public class InputFormatDriver { static class SequenceFileMapper extends Mapper<NullWritable, BytesWritable, Text, BytesWritable> { private Text k = new Text();; @Override protected void map(NullWritable key, BytesWritable value, Context context) throws IOException, InterruptedException { // 获取切片信息 InputSplit split = context.getInputSplit(); // 获取切片路径 Path path = ((FileSplit) split).getPath(); // 根据切片路径获取文件名称 k.set(path.toString()); // 文件名称为key context.write(k, value); } } public static void main(String[] args) throws Exception { args = new String[] { "e:/inputinputformat", "e:/output1" }; Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(InputFormatDriver.class); job.setMapperClass(SequenceFileMapper.class); job.setNumReduceTasks(0); job.setInputFormatClass(WholeFileInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(BytesWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } }