Distributed - 分布式锁
一、为什么用分布式锁?
下图中的两个A系统,运行在两个不同的JVM里面,他们加的锁只对属于自己JVM里面的线程有效,对于其他JVM的线程是无效的。因此,这里的问题是:Java提供的原生锁机制在多机部署场景下失效了这是因为两台机器加的锁不是同一个锁(两个锁在不同的JVM里面)。那么,我们只要保证两台机器加的锁是同一个锁,问题不就解决了吗?
此时,就该分布式锁隆重登场了,分布式锁的思路是:在整个系统提供一个全局、唯一的获取锁的“东西”,然后每个系统在需要加锁时,都去问这个“东西”拿到一把锁,这样不同的系统拿到的就可以认为是同一把锁。至于这个“东西”,可以是Redis、Zookeeper,也可以是数据库。我们来看下图:
通过上面的分析,我们知道了库存超卖场景在分布式部署系统的情况下使用Java原生的锁机制无法保证线程安全,所以我们需要用到分布式锁的方案。那么,如何实现分布式锁呢?
二、Redis实现分布式锁
2.1 Redis的解决方案
- 通过Redis中是否存在某个锁ID,则可以判断是否上锁。
- 为了保证判断锁是否存在的原子性,保证只有一个线程获取同一把锁,Redis有SETNX(即SET if Not eXists)和GETSET(先写新值,返回旧值,原子性操作,可以用于分辨是不是首次操作)操作。
- 释放锁的时候就把这个key删除。
- 为了防止主机宕机或网络断开之后的死锁,Redis没有ZK那种天然的实现方式,只能依赖设置超时时间来规避。
具体代码是这样的:
// 获取锁 // NX是指如果key不存在就成功,key存在返回false,PX可以指定过期时间 SET anyLock unique_value NX PX 30000 // 释放锁:通过执行一段lua脚本 // 释放锁涉及到两条指令,这两条指令不是原子性的 // 需要用到redis的lua脚本支持特性,redis执行lua脚本是原子性的 if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end
这种方式有几大要点:
- 一定要用SET key value NX PX milliseconds 命令
如果不用,先设置了值,再设置过期时间,这个不是原子性操作,有可能在设置过期时间之前宕机,会造成死锁(key永久存在) - value要具有唯一性
这个是为了在解锁的时候,需要验证value是和加锁的一致才删除key。
这是避免了一种情况:假设A获取了锁,过期时间30s,此时35s之后,锁已经自动释放了,A去释放锁,但是此时可能B获取了锁。A客户端就不能删除B的锁了。
2.2 Redis不同的部署方式,带来的不同问题
除了要考虑客户端要怎么实现分布式锁之外,还需要考虑redis的部署问题。redis有3种部署方式:
- 单机模式
- master-slave + sentinel选举模式
- redis cluster模式
带来的问题
1-采用单机部署模式:会存在单点问题,只要redis故障了。加锁就不行了。
2-采用master-slave模式:加锁的时候只对一个节点加锁,即便通过sentinel做了高可用,但是如果master节点故障了,发生主从切换,此时就会有可能出现锁丢失的问题。
3-基于以上的考虑,其实redis的作者也考虑到这个问题,他提出了一个RedLock的算法,这个算法的意思大概是这样的:假设redis的部署模式是redis cluster,总共有5个master节点,通过以下步骤获取一把锁:
- 获取当前时间戳,单位是毫秒
- 轮流尝试在每个master节点上创建锁,过期时间设置较短,一般就几十毫秒
- 尝试在大多数节点上建立一个锁,比如5个节点就要求是3个节点(n / 2 +1)
- 客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了
- 要是锁建立失败了,那么就依次删除这个锁
- 只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁
但是这样的这种算法还是颇具争议的,可能还会存在不少的问题,无法保证加锁的过程一定正确。
三、Redisson实现分布式锁
此外,实现Redis的分布式锁,除了自己基于redis client原生api来实现之外,还可以使用开源框架:Redission。Redisson是一个企业级的开源Redis Client,也提供了分布式锁的支持。我也非常推荐大家使用,为什么呢?
3.1 Redis api,有自动释放锁的缺陷
回想一下上面说的,如果自己写代码来通过redis设置一个值,是通过下面这个命令设置的。
- SET anyLock unique_value NX PX 30000
这里设置的超时时间是30s,假如我超过30s都还没有完成业务逻辑的情况下,key会过期,其他线程有可能会获取到锁。这样一来的话,第一个线程还没执行完业务逻辑,第二个线程进来了也会出现线程安全问题。所以我们还需要额外的去维护这个过期时间,太麻烦了~
3.2 Redisson 的解决方案
我们来看看redisson是怎么实现的?先感受一下使用redission的爽:
//设置config Config config = new Config(); config.useClusterServers() .addNodeAddress("redis://192.168.31.101:7001") .addNodeAddress("redis://192.168.31.101:7002") .addNodeAddress("redis://192.168.31.101:7003") .addNodeAddress("redis://192.168.31.102:7001") .addNodeAddress("redis://192.168.31.102:7002") .addNodeAddress("redis://192.168.31.102:7003"); //创建redisson RedissonClient redisson = Redisson.create(config); //通过redisson获得锁 RLock lock = redisson.getLock("anyLock"); //上锁 lock.lock(); //释放锁 lock.unlock();
就是这么简单,我们只需要通过它的api中的lock和unlock即可完成分布式锁,他帮我们考虑了很多细节:
- redisson所有指令都通过lua脚本执行,redis支持lua脚本原子性执行
- redisson设置一个key的默认过期时间为30s,如果某个客户端持有一个锁超过了30s怎么办?
redisson中有一个watchdog
的概念,翻译过来就是看门狗,它会在你获取锁之后,每隔10秒帮你把key的超时时间设为30s
这样的话,就算一直持有锁也不会出现key过期了,其他线程获取到锁的问题了。 - redisson的“看门狗”逻辑保证了没有死锁发生。
(如果机器宕机了,看门狗也就没了。此时就不会延长key的过期时间,到了30s之后就会自动过期了,其他线程可以获取到锁)
这里稍微贴出来其实现代码:
// 加锁逻辑 private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) { if (leaseTime != -1) { return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG); } // 调用一段lua脚本,设置一些key、过期时间 RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG); ttlRemainingFuture.addListener(new FutureListener<Long>() { @Override public void operationComplete(Future<Long> future) throws Exception { if (!future.isSuccess()) { return; } Long ttlRemaining = future.getNow(); // lock acquired if (ttlRemaining == null) { // 看门狗逻辑 scheduleExpirationRenewal(threadId); } } }); return ttlRemainingFuture; } <T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) { internalLockLeaseTime = unit.toMillis(leaseTime); return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command, "if (redis.call('exists', KEYS[1]) == 0) then " + "redis.call('hset', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " + "redis.call('hincrby', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "return redis.call('pttl', KEYS[1]);", Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId)); } // 看门狗最终会调用了这里 private void scheduleExpirationRenewal(final long threadId) { if (expirationRenewalMap.containsKey(getEntryName())) { return; } // 这个任务会延迟10s执行 Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() { @Override public void run(Timeout timeout) throws Exception { // 这个操作会将key的过期时间重新设置为30s RFuture<Boolean> future = renewExpirationAsync(threadId); future.addListener(new FutureListener<Boolean>() { @Override public void operationComplete(Future<Boolean> future) throws Exception { expirationRenewalMap.remove(getEntryName()); if (!future.isSuccess()) { log.error("Can't update lock " + getName() + " expiration", future.cause()); return; } if (future.getNow()) { // reschedule itself // 通过递归调用本方法,无限循环延长过期时间 scheduleExpirationRenewal(threadId); } } }); } }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS); if (expirationRenewalMap.putIfAbsent(getEntryName(), new ExpirationEntry(threadId, task)) != null) { task.cancel(); } }
另外,redisson还提供了对redlock算法的支持,它的用法也很简单:
RedissonClient redisson = Redisson.create(config); RLock lock1 = redisson.getFairLock("lock1"); RLock lock2 = redisson.getFairLock("lock2"); RLock lock3 = redisson.getFairLock("lock3"); RedissonRedLock multiLock = new RedissonRedLock(lock1, lock2, lock3); multiLock.lock(); multiLock.unlock();
小结:
本节分析了使用redis作为分布式锁的具体落地方案以及其一些局限性然后介绍了一个redis的客户端框架redisson,这也是我推荐大家使用的,比自己写代码实现会少care很多细节。
四、ZooKeeper实现分布式锁
4.1 ZooKeeper的背景
zk的模型是这样的:zk包含一系列的节点,叫做znode,就好像文件系统一样每个znode表示一个目录,然后znode有一些特性:
- 有序节点:假如当前有一个父节点为
/lock
,我们可以在这个父节点下面创建子节点;
zookeeper提供了一个可选的有序特性,例如我们可以创建子节点“/lock/node-”并且指明有序,那么zookeeper在生成子节点时会根据当前的子节点数量自动添加整数序号
也就是说,如果是第一个创建的子节点,那么生成的子节点为/lock/node-0000000000
,下一个节点则为/lock/node-0000000001
,依次类推。 - 临时节点:客户端可以建立一个临时节点,在会话结束或者会话超时后,zookeeper会自动删除该节点。
- 事件监听:在读取数据时,我们可以同时对节点设置事件监听,当节点数据或结构变化时,zookeeper会通知客户端。当前zookeeper有如下四种事件:
- 节点创建
- 节点删除
- 节点数据修改
- 子节点变更
4.2 Zookeeper的解决方案
zk实现分布式锁的落地方案:
- 使用zk的临时节点和有序节点,每个线程获取锁就是在zk创建一个临时有序的节点,比如在/lock/目录下。
- 创建节点成功后,获取/lock目录下的所有临时节点,再判断当前线程创建的节点是否是所有的节点的序号最小的节点
- 如果当前线程创建的节点是所有节点序号最小的节点,则认为获取锁成功。
- 如果当前线程创建的节点不是所有节点序号最小的节点,则对节点序号的前一个节点添加一个事件监听。
比如当前线程获取到的节点序号为/lock/003
,然后所有的节点列表为[/lock/001,/lock/002,/lock/003]
,则对/lock/002
这个节点添加一个事件监听器。
如果锁释放了,会唤醒下一个序号的节点,然后重新执行第3步,判断是否自己的节点序号是最小。比如/lock/001
释放了,/lock/002
监听到时间,此时节点集合为[/lock/002,/lock/003]
,则/lock/002
为最小序号节点,获取到锁。
整个过程如下:
五、Redis VS Zookeeper
Redis的缺点:
- 它获取锁的方式简单粗暴,获取不到锁直接不断尝试获取锁,比较消耗性能。
- 另外来说的话,redis的设计定位决定了它的数据并不是强一致性的,在某些极端情况下,可能会出现问题。锁的模型不够健壮
- 即便使用redlock算法来实现,在某些复杂场景下,也无法保证其实现100%没有问题,关于redlock的讨论可以看How to do distributed locking
- redis分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能。
Redis的优点:
- redis的性能很高,可以支撑高并发的获取、释放锁操作
- 大部分情况下都不会遇到所谓的“极端复杂场景”所以使用redis作为分布式锁也不失为一种好的方案
Zookeeper的缺点:
- 如果有较多的客户端频繁的申请加锁、释放锁,对于zk集群的压力会比较大
Zookeeper的优点:
- zookeeper天生设计定位就是分布式协调,强一致性。锁的模型健壮、简单易用、适合做分布式锁。
- 如果获取不到锁,只需要添加一个监听器就可以了,不用一直轮询,性能消耗较小。
六、分布式锁的构成条件
6.1 基本条件 三要素
多线程和多进程环境下的锁,都需要满足一些最基本的条件:
- 需要有存储锁的空间,并且锁的空间是可以访问到的
- 锁需要被唯一标识
- 锁要有至少两种状态
存储空间
锁是一个抽象的概念,锁的实现,需要依存于一个可以存储锁的空间。在多线程中是内存,在多进程中是内存或者磁盘。更重要的是,这个空间是可以被访问到的。多线程中,不同的线程都可以访问到堆中的成员变量;在多进程中,不同的进程可以访问到共享内存中的数据或者存储在磁盘中的文件。但是在分布式环境中,不同的主机很难访问对方的内存或磁盘。这就需要一个都能访问到的外部空间来作为存储空间。
最普遍的外部存储空间就是数据库了,事实上也确实有基于数据库做分布式锁(行锁、version乐观锁),如quartz集群架构中就有所使用。除此以外,还有各式缓存如Redis、Tair、Memcached、Mongodb,当然还有专门的分布式协调服务Zookeeper,甚至是另一台主机。只要可以存储数据、锁在其中可以被多主机访问到,那就可以作为分布式锁的存储空间。
唯一标识
不同的共享资源,必然需要用不同的锁进行保护,因此相应的锁必须有唯一的标识。在多线程环境中,锁可以是一个对象,那么对这个对象的引用便是这个唯一标识。多进程环境中,信号量在共享内存中也是由引用来作为唯一的标识。但是如果不在内存中,失去了对锁的引用,如何唯一标识它呢?上文提到的有名信号量,便是用硬盘中的文件名作为唯一标识。因此,在分布式环境中,只要给这个锁设定一个名称,并且保证这个名称是全局唯一的,那么就可以作为唯一标识。
至少两种状态
为了给临界区加锁和解锁,需要存储两种不同的状态。如ReentrantLock中的status,0表示没有线程竞争,大于0表示有线程竞争;信号量大于0表示可以进入临界区,小于等于0则表示需要被阻塞。因此只要在分布式环境中,锁的状态有两种或以上:如有锁、没锁;存在、不存在等等,均可以实现。
有了这三个条件,基本就可以实现一个简单的分布式锁了。下面以数据库为例,实现一个简单的分布式锁: 数据库表,字段为锁的ID(唯一标识),锁的状态(0表示没有被锁,1表示被锁)。 伪代码为:
lock = mysql.get(id); while(lock.status == 1) { sleep(100); } mysql.update(lock.status = 1); doSomething(); mysql.update(lock.status = 0);
6.2 基本条件下的问题
以上的方式即可以实现一个粗糙的分布式锁,但是这样的实现,有没有什么问题呢?
-
问题1:锁状态判断原子性无法保证 从读取锁的状态,到判断该状态是否为被锁,需要经历两步操作。如果不能保证这两步的原子性,就可能导致不止一个请求获取到了锁,这显然是不行的。因此,我们需要保证锁状态判断的原子性。
-
问题2:网络断开或主机宕机,锁状态无法清除 假设在主机已经获取到锁的情况下,突然出现了网络断开或者主机宕机,如果不做任何处理该锁将仍然处于被锁定的状态。那么之后所有的请求都无法再成功抢占到这个锁。因此,我们需要在持有锁的主机宕机或者网络断开的时候,及时的释放掉这把锁。
-
问题3:无法保证释放的是自己上锁的那把锁 在解决了问题2的情况下再设想一下,假设持有锁的主机A在临界区遇到网络抖动导致网络断开,分布式锁及时的释放掉了这把锁。之后,另一个主机B占有了这把锁,但是此时主机A网络恢复,退出临界区时解锁。由于都是同一把锁,所以A就会将B的锁解开。此时如果有第三个主机尝试抢占这把锁,也将会成功获得。因此,我们需要在解锁时,确定自己解的这个锁正是自己锁上的。解决办法:remove之前判断value(高并发下value可能被修改,应该用lua来保证原子性)
6.3 进阶条件
如果分布式锁的实现,还能再解决上面的三个问题,那么就可以算是一个相对完整的分布式锁了。然而,在实际的系统环境中,还会对分布式锁有更高级的要求。
- 可重入:线程中的可重入,指的是外层函数获得锁之后,内层也可以获得锁,ReentrantLock和synchronized都是可重入锁;衍生到分布式环境中,一般仍然指的是线程的可重入,在绝大多数分布式环境中,都要求分布式锁是可重入的。
- 惊群效应(Herd Effect):在分布式锁中,惊群效应指的是,在有多个请求等待获取锁的时候,一旦占有锁的线程释放之后,如果所有等待的方都同时被唤醒,尝试抢占锁。但是这样的情况会造成比较大的开销,那么在实现分布式锁的时候,应该尽量避免惊群效应的产生。
- 公平锁和非公平锁:不同的需求,可能需要不同的分布式锁。非公平锁普遍比公平锁开销小。但是业务需求如果必须要锁的竞争者按顺序获得锁,那么就需要实现公平锁。
- 阻塞锁和自旋锁:针对不同的使用场景,阻塞锁和自旋锁的效率也会有所不同。阻塞锁会有上下文切换,如果并发量比较高且临界区的操作耗时比较短,那么造成的性能开销就比较大了。但是如果临界区操作耗时比较长,一直保持自旋,也会对CPU造成更大的负荷。
保留以上所有问题和条件,我们接下来看一些比较典型的实现方案。
参考文献
https://zhuanlan.zhihu.com/p/163224180