算法 - 前缀树Trie
leetcode官方解析(必看)
Trie用处
Trie (发音为 "try") 或前缀树是一种树数据结构,用于检索字符串数据集中的键。这一高效的数据结构有多种应用:
1. 自动补全
2. 拼写检查
还有其他的数据结构,如平衡树和哈希表,使我们能够在字符串数据集中搜索单词。为什么我们还需要 Trie 树呢?尽管哈希表可以在 O(1)O(1) 时间内寻找键值,却无法高效的完成以下操作:
- 找到具有同一前缀的全部键值。
- 按词典序枚举字符串的数据集。
Trie 树优于哈希表的另一个理由是,随着哈希表大小增加,会出现大量的冲突,时间复杂度可能增加到 O(n)O(n),其中 nn 是插入的键的数量。与哈希表相比,Trie 树在存储多个具有相同前缀的键时可以使用较少的空间。此时 Trie 树只需要 O(m)O(m) 的时间复杂度,其中 mm 为键长。而在平衡树中查找键值需要 O(m \log n)O(mlogn) 时间复杂度。
Trie 树的结点结构
Trie 树是一个有根的树,其结点具有以下字段:
- 最多 RR 个指向子结点的链接,其中每个链接对应字母表数据集中的一个字母。本文中假定 RR 为 26,小写拉丁字母的数量。
- 布尔字段,以指定节点是对应键的结尾还是只是键前缀。
class TrieNode { // R links to node children private TrieNode[] links; private final int R = 26; private boolean isEnd; public TrieNode() { links = new TrieNode[R]; } public boolean containsKey(char ch) { return links[ch -'a'] != null; } public TrieNode get(char ch) { return links[ch -'a']; } public void put(char ch, TrieNode node) { links[ch -'a'] = node; } public void setEnd() { isEnd = true; } public boolean isEnd() { return isEnd; } }
Trie 树的增删查
向 Trie 树中插入键
在 Trie 树中查找键
查找 Trie 树中的键前缀
在 Trie 树中删除键
参考另一篇文章:https://blog.csdn.net/yuzhiqiang666/article/details/80711441
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
2019-01-06 Spring Bean自动检测
2019-01-06 java 自定义注解