[AGC034D] Manhattan Max Matching
解答
明显用网络流……但是图太大了!而且曼哈顿距离暴难处理!!
……然后想到拆点:\((x_1, y_1), (x_2, y_2)\)之间的曼哈顿距离
\[\begin{aligned}
dist
&= |x_1-x_2|+|y_1-y_2| \\
&= \max\{x_1-x_2, x_2-x_1\}+\max\{y_1-y_2, y_2-y_1\} \\
&= \max\{(x_1+y_1)+(-x_2-y_2), \cdots, (-x_1-y_1)+(x_2+y_2)\}
\end{aligned}
\]
之后,就只有在整体上取\(\max\),随便建图就可以了。
代码
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int inf = 10, maxn = 1e5;
int ans;
namespace MCMF{
int head[maxn], nxt[maxn], to[maxn], c[maxn], r[maxn], tot = 1;
void add(int u, int v, int w, int f) {
assert(++tot < maxn);
nxt[tot] = head[u];
to[tot] = v;
c[tot] = w;
r[tot] = f;
head[u] = tot;
}
void add2(int u, int v, int w, int f) {
add(u,v,w,f), add(v,u,-w,0);
}
#define mp make_pair
typedef pair<long long, int> qnode;
int dis[maxn], inq[maxn], pre[maxn];
void spfa(int s) {
memset(dis, 0x3f, sizeof(dis));
memset(pre, 0, sizeof(pre));
queue<int> q;
dis[s] = 0;
q.push(s);
while (!q.empty()) {
int u = q.front();
q.pop(); inq[u] = 0;
for (int e = head[u]; e; e = nxt[e]) {
if (!r[e]) continue;
int v = to[e], w = c[e];
if (dis[u]+w < dis[v]) {
pre[v] = e;
dis[v] = dis[u]+w;
if (!inq[v]) {
q.push(v);
inq[v] = 1;
}
}
}
}
}
void augment(int t) {
int flow = inf;
for (int e = pre[t]; e; e = pre[to[e^1]]) {
flow = min(flow, r[e]);
}
for (int e = pre[t]; e; e = pre[to[e^1]]) {
r[e] -= flow;
r[e^1] += flow;
}
ans += flow*dis[t];
}
}
using namespace MCMF;
int n, rx[maxn], ry[maxn], rc[maxn], bx[maxn], by[maxn], bc[maxn];
signed main() {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> rx[i] >> ry[i] >> rc[i];
add2(1, i+10, 0, rc[i]);
add2(i+10, 3, rx[i]+ry[i], inf);
add2(i+10, 4, rx[i]-ry[i], inf);
add2(i+10, 5, -rx[i]+ry[i], inf);
add2(i+10, 6, -rx[i]-ry[i], inf);
}
for (int i = n; i < 2*n; ++i) {
cin >> bx[i] >> by[i] >> bc[i];
add2(3, i+10, -bx[i]-by[i], inf);
add2(4, i+10, -bx[i]+by[i], inf);
add2(5, i+10, bx[i]-by[i], inf);
add2(6, i+10, bx[i]+by[i], inf);
add2(i+10, 2, 0, bc[i]);
}
while (spfa(1), pre[2]) augment(2);
cout << -ans;
}