spark shuffle 相关细节整理
1.Shuffle Write 和Shuffle Read具体发生在哪里
2.哪里用到了Partitioner
3.何为mapSideCombine
4.何时进行排序
之前已经看过spark shuffle源码了,现在总结一下一些之前没有理解的小知识点,作为一个总结。
用户自定义的Partitioner存到了哪里?
假设用户在调用reduceByKey时,传递了一个自定义的Partitioner,那么,这个Partitioner会被保存到ShuffleRDD的ShuffleDependency中。在进行Shuffle Write时,会使用这个Partitioner来对finalRDD.iterator(partition)的计算结果shuffle到不同的Bucket中。
何为mapSideCombine
reduceByKey默认是开启了mapSideCombine的,在进行shuffle write时会进行本地聚合,在shuffle read时,也会合并一下。举一个例子更好:
shuffle write阶段:
partition0:[(hello,1),(hello,1)]
partition1:[(hello,1),(word,1),(word,1)]
mapSideCombine后:
partition0:[(hello,2)]
partition1:[(hello,1),(word,2)]
hash shuffle后:
[(hello,2),(hello,1)]
[(word,2)]
hash read阶段:
[(hello,3)]
[(word,2)]
何时排序
排序操作发生在shuffle read 阶段。在shuffle read 进行完mapSideCombine之后,就开始进行排序了。
reduceByKey做了什么?
假设我们对rdd1调用了reduceByKey,那么最终的RDD依赖关系如下:rdd1->ShuffleRDD。rdd1.reduceByKey中,会做如下非常重要的事情:创建ShuffleRDD,在创建ShuffleRDD的过程中最最最重要的就是会创建ShuffleDependency,这个ShuffleDependency中有Aggregator,Partitioner,Ordering,parentRDD,mapSideCombine等重要的信息。为什么说ShuffleDependency非常重要,因为他是沟通Shuffle Writer和Shuffle Reader的一个重要桥梁。
Shuffle Write
Shuffle Write 发生在ShuffleMapTask.runTask中。首先反序列出rdd1和那个ShuffleDependency:(rdd1,dep),然后调用rdd1.iterator(partition)获取计算结果,再对计算结果进行ShuffleWriter,代码如下:
override def runTask(context: TaskContext): MapStatus = { // Deserialize the RDD using the broadcast variable. val deserializeStartTime = System.currentTimeMillis() val ser = SparkEnv.get.closureSerializer.newInstance() //统计反序列化rdd和shuffleDependency的时间 val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime metrics = Some(context.taskMetrics) var writer: ShuffleWriter[Any, Any] = null try { val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context) writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) return writer.stop(success = true).get } catch { case e: Exception => try { if (writer != null) { writer.stop(success = false) } } catch { case e: Exception => log.debug("Could not stop writer", e) } throw e } }
我们以HashSuffleWriter为例,在其write(),他就会用到mapSideCombine和Partitioner。如下:
/** Write a bunch of records to this task's output */ override def write(records: Iterator[Product2[K, V]]): Unit = { val iter = if (dep.aggregator.isDefined) { if (dep.mapSideCombine) { dep.aggregator.get.combineValuesByKey(records, context) } else { records } } else { require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!") records } for (elem <- iter) { val bucketId = dep.partitioner.getPartition(elem._1) shuffle.writers(bucketId).write(elem._1, elem._2) } }
Shuffle Read
shuffle Read发生在ShuffleRDD的compute中:
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = { val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]] SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context) .read() .asInstanceOf[Iterator[(K, C)]] }
下面是HashShuffleReader的read():
/** Read the combined key-values for this reduce task */ override def read(): Iterator[Product2[K, C]] = { val ser = Serializer.getSerializer(dep.serializer) val iter = BlockStoreShuffleFetcher.fetch(handle.shuffleId, startPartition, context, ser) val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) { if (dep.mapSideCombine) { new InterruptibleIterator(context, dep.aggregator.get.combineCombinersByKey(iter, context)) } else { new InterruptibleIterator(context, dep.aggregator.get.combineValuesByKey(iter, context)) } } else { require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!") // Convert the Product2s to pairs since this is what downstream RDDs currently expect iter.asInstanceOf[Iterator[Product2[K, C]]].map(pair => (pair._1, pair._2)) } // Sort the output if there is a sort ordering defined. dep.keyOrdering match { case Some(keyOrd: Ordering[K]) => // Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled, // the ExternalSorter won't spill to disk. val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser)) sorter.insertAll(aggregatedIter) context.taskMetrics.incMemoryBytesSpilled(sorter.memoryBytesSpilled) context.taskMetrics.incDiskBytesSpilled(sorter.diskBytesSpilled) sorter.iterator case None => aggregatedIter } }