01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为C1,C2,…,Cn,与之相对应的价值为W1,W2,…,Wn.求解将那些物品装入背包可使总价值最大。
动态规划(DP):
1) 子问题定义:F[i][j]表示前i件物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值。
2) 根据第i件物品放或不放进行决策
(1-1)
其中F[i-1][j]表示前i-1件物品中选取若干件物品放入剩余空间为j的背包中所能得到的最大价值;
而F[i-1][j-C[i]]+W[i]表示前i-1件物品中选取若干件物品放入剩余空间为j-C[i]的背包中所能取得的最大价值加上第i件物品的价值。
根据第i件物品放或是不放确定遍历到第i件物品时的状态F[i][j]。
设物品件数为N,背包容量为V,第i件物品体积为C[i],第i件物品价值为W[i]。
由此写出伪代码如下:
- F[0][] ← {0}
- F[][0] ← {0}
- for i←1 to N
- do for k←1 to V
- F[i][k] ← F[i-1][k]
- if(k >= C[i])
- then F[i][k] ← max(F[i][k],F[i-1][k-C[i]]+W[i])
- return F[N][V]
以上伪代码数组均为基于1索引,及第一件物品索引为1。时间及空间复杂度均为O(VN)
举例:表1-1为一个背包问题数据表,设背包容量为10根据上述解决方法可得到对应的F[i][j]如表1-2所示,最大价值即为F[6][10].
表1-1背包问题数据表
物品号i | 1 | 2 | 3 | 4 | 5 | 6 |
体积C | 2 | 3 | 1 | 4 | 6 | 5 |
价值W | 5 | 6 | 5 | 1 | 19 | 7 |
表1-2前i件物品选若干件放入空间为j的背包中得到的最大价值表
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
2 | 0 | 5 | 6 | 6 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
3 | 0 | 5 | 5 | 10 | 11 | 11 | 16 | 16 | 16 | 16 | 16 |
4 | 0 | 5 | 5 | 10 | 11 | 11 | 16 | 16 | 16 | 16 | 17 |
5 | 0 | 5 | 5 | 10 | 11 | 11 | 19 | 24 | 24 | 29 | 30 |
6 | 0 | 5 | 5 | 10 | 11 | 11 | 19 | 24 | 24 | 29 | 30 |
很多文章讲背包问题时只是把最大价值求出来了,并没有把所选的是哪些物品找出来。本人在学习背包问题之前遇到过很多的类似问题,当时也是只求得了最大价值或最大和,对具体哪些物品或路径等细节也束手无策。再次和大家一起分享细节的求法。
根据算法求出的最大价值表本身其实含有位置信息,从F[N][V]逆着走向F[0][0],设i=N,j=V,如果F[i][j]==F[i-1][j-C[i]]+W[i]说明包里面有第i件物品,同时j -= C[i],不管F[i][j]与F[i-1][j-C[i]]+W[i]相不相等i都要减1,因为01背包的第i件物品要么放要么不放,不管放还是不放其已经遍历过了,需要继续往下遍历。
打印背包内物品的伪代码如下:
- i←N
- j←V
- while(i>0 && j>0)
- do if(F[i][j]=F[i-1][j-C[i]]+W[i])
- then Print W[i]
- j←j-C[i]
- i←i-1
当然也可以定义一个二维数组Path[N][V]来存放背包内物品信息,开始时Path[N][V]初始化为0,当 F[i][j]==F[i-1][j-C[i]]+W[i]时Path[i][j]置1。最后通过从Path[N+1][V+1]逆着走向Path[0][0]来获取背包内物品。其中Path[0][]与Path[][0]为边界。
加入路径信息的伪代码如下:
- F[0][] ← {0}
- F[][0] ← {0}
- Path[][] ← 0
- for i←1 to N
- do for k←1 to V
- F[i][k] ← F[i-1][k]
- if(k >= C[i] && F[i][k] < F[i-1][k-C[i]]+W[i])
- then F[i][k] ← F[i-1][k-C[i]]+W[i]
- Path[i][k] ← 1
- return F[N][V] and Path[][]
打印背包内物品的伪代码如下:
- i←N
- j←V
- while(i>0 && j>0)
- do if(Path[i][j] = 1)
- then Print W[i]
- j←j-C[i]
- i←i-1
在时间及空间复杂度均为O(NV)的情况下,利用Path[][]的方法明显比直接通过F[i][j]==F[i-1][j-C[i]]+W[i]来打印物品耗费空间,Path[][]需要额外的空间O(NV)但总空间复杂度不变仍为O(NV)。但下面要讲到的O(V)的空间复杂度的方法却不能利用关系式F [j]==F [j-C[i]]+W[i]而只能利用Path[][]进行标记.
接下来考虑如何压缩空间,以降低空间复杂度。
时间复杂度为O(VN),空间复杂度将为O(V)
观察伪代码可也发现,F[i][j]只与F[i-1][j]和F[i-1][j-C[i]]有关,即只和i-1时刻状态有关,所以我们只需要用一维数组F[]来保存i-1时的状态F[]。假设i-1时刻的F[]为{a0,a1,a2,…,av},难么i时刻的F[]中第k个应该为max(ak,ak-C[i]+W[i])即max(F[k],F[k-C[i]]+W[i]),这就需要我们遍历V时逆序遍历,这样才能保证求i时刻F[k]时F[k-C[i]]是i-1时刻的值。如果正序遍历则当求F[k]时其前面的F[0],F[1],…,F[K-1]都已经改变过,里面存的都不是i-1时刻的值,这样求F[k]时利用F[K-C[i]]必定是错的值。最后F[V]即为最大价值。
求F[j]的状态方程如下:
(1-2)
伪代码如下:
- F[] ← {0}
- for i ← 1 to N
- do for k ← V to C[i]
- F[k] ← max(F[k],F[k-C[i]]+W[i])
- return F[V]
同样,怎么求路径?
利用前面讲到的Path[][]标记,需空间消耗O(NV)。这里不能用F [j]==F [j-C[i]]+W[i]来判断是因为一维数组并不能提供足够的信息来寻找二维路径。
加入路径信息的伪代码如下:
- F[] ← {0}
- Path[][]←0
- for i←1 to N
- do for k←V to C[i]
- if(F[k] < F[k-C[i]]+W[i])
- then F[k] ← F[k-C[i]]+W[i]
- Path[i][k] ← 1
- return F[V] and Path[][]
打印路径的伪代码和前面未压缩空间复杂度时的伪代码一样,这里不再重写
这里给出第二种思路
时间复杂度O(VN),不考虑路径空间复杂度为O(V),考虑路径空间复杂度为O(VN)
#include<iostream> using namespace std; #define Size 1111 int dp[Size]; int Path[Size][Size]; int Max(int x,int y) { return x>y?x:y; } int Package01_Compress(int Weight[], int Value[], int goodsN, int maxWeight){ int i,j; memset(dp,0,sizeof(dp)); memset(Path,0,sizeof(Path)); for(i=1;i<=goodsN;i++) for(j=maxWeight;j>=Weight[i];j--){ /* -----只求最大值----- */ /* dp[j]=Max( dp[j] , dp[j-Weight[i]] +Value[i] );*/ /*------求最大值和路径------*/ if(dp[j] < dp[j-Weight[i]]+Value[i]) { dp[j] = dp[j-Weight[i]]+Value[i]; Path[i][j] = 1; } /*--------------------------*/ } return dp[maxWeight]; } int main() { int va[Size],vm[Size]; int t,n,m; int i; cin>>t; while(t--) { cin>>n>>m; //n为个数,m为最大载重量 for(i=1;i<=n;i++) cin>>va[i]; for(i=1;i<=n;i++) cin>>vm[i]; int myWhats=Package01_Compress(vm,va, n, m); printf("%d\n",myWhats); printf("-----取的重量如下(不超过%d):\n",m); int i2 = n, j2 = m; while(i2 > 0 && j2 > 0) { if(Path[i2][j2] == 1) { cout << vm[i2] << " "; j2 -= vm[i2]; } i2--; } cout << endl; } return 0; }本文部分内容参考“背包九讲”
和这里
版权声明:本文为博主原创文章,未经博主允许不得转载。