海量数据处理算法(top K问题)

举例

有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16字节,内存限制大小是1M。返回频数最高的100个词。

思路

  • 首先把文件分开
  • 针对每个文件hash遍历,统计每个词语的频率
  • 使用堆进行遍历
  • 把堆归并起来

具体的方案

1.分治: 
顺序读文件中,对于每个词c,取hash(c)%2000,然后按照该值存到2000个小文件中。这样每个文件大概是500k左右。

注意:

如果其中的有的文件超过了1M大小,还可以按照类似的方法继续往下分,直到分解得到的小文件的大小都不超过1M。

2.hash遍历: 
对每个小文件,用hash的方式统计每个文件中出现的词以及相应的频率

3.堆遍历: 
用 最小堆取出出现频率最大的100个词,并把100个词及相应的频率存入文件,这样又得到了5000个文件。

4.归并整合

下一步就是把这5000个文件进行归并(类似与归并排序)的过程了。

posted on 2018-07-11 17:08  荣耀王者  阅读(407)  评论(0编辑  收藏  举报

导航