狐言不胡言

导航

HashMap、ConcurrentHashMap 1.7和1.8对比

本篇内容是学习的记录,可能会有所不足。

一:JDK1.7中的HashMap

JDK1.7的hashMap是由数组 + 链表组成

/** 1 << 4,表示1,左移4位,变成10000,即16,以二进制形式运行,效率更高
     * 默认的hashMap数组长度
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     * hashMap的最大容量
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;        //1 073 741 824

    /**
     * The load factor used when none specified in constructor.
     * 负载因子
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * An empty table instance to share when the table is not inflated.
     */
    static final Entry<?,?>[] EMPTY_TABLE = {};

    /**
     * The table, resized as necessary. Length MUST Always be a power of two.
     * hashTable,根据需要调整大小。长度一定是2的幂。
     */
    transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

    /**
     * The number of key-value mappings contained in this map.
     * hashMap中元素的个数
     */
    transient int size;

    /**
     * The next size value at which to resize (capacity * load factor).
     * @serial
     */
    // If table == EMPTY_TABLE then this is the initial capacity at which the
    // table will be created when inflated.
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * 记录hashMap元素被修改的次数
     */
    transient int modCount;

1:DEFAULT_INITIAL_CAPACITY,是hashMap默认的初始容量,它的大小一定是2的幂。

2:MAXIMUM_CAPACITY,hashMap支持的最大容量。

3:DEFAULT_LOAD_FACTOR,hashMap默认的负载因子,值为0.75,它决定hashMap数据的密度。

4:Entry<K,V>[] table,hashMap数组,可以根据自己的需要调整大小,长度一定是2的幂。

5:size,主要是记录hashMap中元素的数量。

6:threshold,调整hashMap后的值,即容量*负载因子。

7:loadFactor,可以调整的负载因子。

8:modCount,用来记录hashMap结构被修改的次数。

hashMap源码中有四个构造函数,初始化的时候可以知道容量和负载因子的大小。

 /**   做了两件事:1、为threshold、loadFactor赋值   2、调用init()
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)     //限制最大容量
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))     //检查 loadFactor
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        //真正在做的,只是记录下loadFactor、initialCpacity的值
        this.loadFactor = loadFactor;       //记录下loadFactor
        threshold = initialCapacity;        //初始的 阈值threshold=initialCapacity=16
        init();
    }

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    /**  默认的初始化容量、默认的加载因子
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
    public HashMap() {    //16  0.75
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        inflateTable(threshold);

        putAllForCreate(m);
    }

 接下来看下put方法:

public V put(K key, V value) {
        if (Entry<K,V>[] table == EMPTY_TABLE) {
            inflateTable(threshold);    //初始化表 (初始化、扩容 合并为了一个方法)
        }
        if (key == null)        //对key为null做特殊处理
            return putForNullKey(value);
        int hash = hash(key);           //计算hash值
        int i = indexFor(hash, table.length);   //根据hash值计算出index下标
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {  //遍历下标为i处的链表
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {  //如果key值相同,覆盖旧值,返回新值
                V oldValue = e.value;
                e.value = value;    //新值 覆盖 旧值
                e.recordAccess(this);   //do nothing
                return oldValue;    //返回旧值
            }
        }

        modCount++;         //修改次数+1,类似于一个version number
        addEntry(hash, key, value, i);
        return null;
    }

可以看到到table是空的时候,调用了一个方法:

private void inflateTable(int toSize) {
        // Find a power of 2 >= toSize
        int capacity = roundUpToPowerOf2(toSize);
        //
        threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
        table = new Entry[capacity];    //初始化表
        initHashSeedAsNeeded(capacity);
}

 这个方法用来初始化table和table的扩容,roundUpToPowerOf2可以保证hashMap的容量一定是2的幂。

hashMap put元素时,会先根据hash运算计算出hash值,然后根据hash值和table的长度进行取模,计算出元素在table中的下标,如果key相同就覆盖原来的旧值,如果不相同就加入链表中。

    /**
     * Returns index for hash code h.
     * 计算元素在table中的下标位置
     */
    static int indexFor(int h, int length) {
        // assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
        return h & (length-1);
    }

    /**
     * Adds a new entry with the specified key, value and hash code to
     * the specified bucket.  It is the responsibility of this
     * method to resize the table if appropriate.
     *
     * Subclass overrides this to alter the behavior of put method.
     */
    void addEntry(int hash, K key, V value, int bucketIndex) {
        if ((size >= threshold) && (null != table[bucketIndex])) {  //如果size大于threshold && table在下标为index的地方已经有entry了
            resize(2 * table.length);       //扩容,将数组长度变为原来两倍
            hash = (null != key) ? hash(key) : 0;       //重新计算 hash 值
            bucketIndex = indexFor(hash, table.length); //重新计算下标
        }

        createEntry(hash, key, value, bucketIndex);     //创建entry
    }

    /**
     * Like addEntry except that this version is used when creating entries
     * as part of Map construction or "pseudo-construction" (cloning,
     * deserialization).  This version needn't worry about resizing the table.
     *
     * Subclass overrides this to alter the behavior of HashMap(Map),
     * clone, and readObject.
     */
    void createEntry(int hash, K key, V value, int bucketIndex) {
        Entry<K,V> e = table[bucketIndex];      //获取table中存的entry
        table[bucketIndex] = new Entry<>(hash, key, value, e);   //将新的entry放到数组中,next指向旧的table[i]
        size++;         //修改map中元素个数
    }

当put的元素个数大于12时,即大于hashMap的容量*负载因子计算后的值,那么就会进行扩容,上述源代码可以看到扩容的条件, 除了大于12,还要看当前put进table所处的位置,是否为null,若是null,就不进行扩容,否则就扩容成原来容量的2倍,扩容后需要重新计算hash和计算下标,由于table的长度发生了变化,需要重新计算。

接下来看下get方法:

public V get(Object key) {
        if (key == null)
            return getForNullKey();
        Entry<K,V> entry = getEntry(key);

        return null == entry ? null : entry.getValue();
}

/**
     * Returns the entry associated with the specified key in the
     * HashMap.  Returns null if the HashMap contains no mapping
     * for the key.
     */
    final Entry<K,V> getEntry(Object key) {
        if (size == 0) {
            return null;
        }

        int hash = (key == null) ? 0 : hash(key);
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }

 get方法也是需要先计算hash然后计算下标,再去寻找元素。

二:JDK1.8中的HashMap

JDK1.8中的hashMap和1.7最大的区别就是引入了红黑树

/**
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     *
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *
     * @serial
     */
    final float loadFactor;

    /**
     * The default initial capacity - MUST be a power of two.
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<30.
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;

    /**
     * The load factor used when none specified in constructor.
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    /**
     * The bin count threshold for using a tree rather than list for a
     * bin.  Bins are converted to trees when adding an element to a
     * bin with at least this many nodes. The value must be greater
     * than 2 and should be at least 8 to mesh with assumptions in
     * tree removal about conversion back to plain bins upon
     * shrinkage.
     *
     */
    static final int TREEIFY_THRESHOLD = 8;

    /**
     * The bin count threshold for untreeifying a (split) bin during a
     * resize operation. Should be less than TREEIFY_THRESHOLD, and at
     * most 6 to mesh with shrinkage detection under removal.
     */
    static final int UNTREEIFY_THRESHOLD = 6;

    /**
     * The smallest table capacity for which bins may be treeified.
     * (Otherwise the table is resized if too many nodes in a bin.)
     * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
     * between resizing and treeification thresholds.
     */
    static final int MIN_TREEIFY_CAPACITY = 64;

    /**
     * Basic hash bin node, used for most entries.  (See below for
     * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
     */
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;

        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }

        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }

下面看下put方法:

 public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    /**
     * Implements Map.put and related methods.  添加元素
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to put
     * @param onlyIfAbsent if true, don't change existing value
     * @param evict if false, the table is in creation mode.
     * @return previous value, or null if none
     */
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)     //若table为null
            n = (tab = resize()).length;                        //resize
        if ((p = tab[i = (n - 1) & hash]) == null)              //计算下标i,取出i处的元素为p,如果p为null
            tab[i] = newNode(hash, key, value, null);       //创建新的node,放到数组中
        else {                  //若 p!=null
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))     //若key相同
                e = p;      //直接覆盖
            else if (p instanceof TreeNode)     //如果为 树节点
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);     //放到树中
            else {                                          //如果key不相同,也不是treeNode
                for (int binCount = 0; ; ++binCount) {      //遍历i处的链表
                    if ((e = p.next) == null) {             //找到尾部
                        p.next = newNode(hash, key, value, null);       //在末尾添加一个node
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st    //如果链表长度  >= 8
                            treeifyBin(tab, hash);             //将链表转成共黑树
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))     //若果key相同,直接退出循环
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

 可以看到,上述源代码中,put的时候加入了红黑树,当put元素时,若链表的长度大于8,即源代码中的TREEIFY_THRESHOLD的值,这个时候链表就会转化为红黑树结构;当进行扩容的时候,红黑树转移后,若元素个数小于6,那么就会重新转化为链表。

三:JDK1.7中的ConcurrentHashMap 

 JDK1.7中的ConcurrentHashMap和JDK1.7中的HashMap的区别就是数组所存的元素,我们知道ConcurrentHashMap 是线程安全的。

public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);       // 计算Hash值
        int j = (hash >>> segmentShift) & segmentMask;      //计算下标j
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            s = ensureSegment(j);       //若j处有segment就返回,若没有就创建并返回
        return s.put(key, hash, value, false);  //将值put到segment中去
}


 final V put(K key, int hash, V value, boolean onlyIfAbsent) {
            HashEntry<K,V> node = tryLock() ? null :
                scanAndLockForPut(key, hash, value);        //如果tryLock成功,就返回null,否则。。。
            V oldValue;
            try {
                HashEntry<K,V>[] tab = table;
                int index = (tab.length - 1) & hash;        //根据table数组的长度 和 hash值计算index小标
                HashEntry<K,V> first = entryAt(tab, index); //找到table数组在 index处链表的头部
                for (HashEntry<K,V> e = first;;) {      //从first开始遍历链表
                    if (e != null) {                    //若e!=null
                        K k;
                        if ((k = e.key) == key ||
                            (e.hash == hash && key.equals(k))) {        //如果key相同
                            oldValue = e.value;                 //获取旧值
                            if (!onlyIfAbsent) {                //若absent=false
                                e.value = value;                //覆盖旧值
                                ++modCount;                     //
                            }
                            break;      //若已经找到,就退出链表遍历
                        }
                        e = e.next;     //若key不相同,继续遍历
                    }
                    else {              //直到e为null
                        if (node != null)   //将元素放到链表头部
                            node.setNext(first);
                        else
                            node = new HashEntry<K,V>(hash, key, value, first); //创建新的Entry
                        int c = count + 1;      //count 用来记录元素个数
                        if (c > threshold && tab.length < MAXIMUM_CAPACITY)     //如果hashmap元素个数超过threshold,并且table长度小于最大容量
                            rehash(node);       //rehash跟resize的功能差不多,将table的长度变为原来的两倍,重新打包entries,并将给定的node添加到新的table
                        else        //如果还有容量
                            setEntryAt(tab, index, node);   //就在index处添加链表节点
                        ++modCount;     //修改操作数
                        count = c;      //将count+1
                        oldValue = null;    //
                        break;
                    }
                }
            } finally {
                unlock();           //执行完操作后,释放锁
            }
            return oldValue;        //返回oldValue
}

private Segment<K,V> ensureSegment(int k) {
        final Segment<K,V>[] ss = this.segments;
        long u = (k << SSHIFT) + SBASE; // raw offset   获取下标k处的offset,
        Segment<K,V> seg;
        if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u)) == null) {    //如果下标k处没有元素
            Segment<K,V> proto = ss[0]; // use segment 0 as prototype
            int cap = proto.table.length;   //根据proto 获得 cap参数
            float lf = proto.loadFactor;    //。。。
            int threshold = (int)(cap * lf);    //计算threshold
            HashEntry<K,V>[] tab = (HashEntry<K,V>[])new HashEntry[cap];
            if ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                == null) { // recheck   //如果下标k处仍然没有元素
                Segment<K,V> s = new Segment<K,V>(lf, threshold, tab);  //创建segment
                while ((seg = (Segment<K,V>)UNSAFE.getObjectVolatile(ss, u))
                       == null) {   //若下标k处仍然没有元素,自旋
                    if (UNSAFE.compareAndSwapObject(ss, u, null, seg = s))  //若通过CAS更新成功,则退出
                        break;
                }
            }
        }
        return seg;
    }
/** segments中每个元素都是一个专用的hashtable * The segments, each of which is a specialized hash table. */ final Segment<K,V>[] segments;

 可以看到1.7中的ConcurrentHashMap数组中所存的是segments,每个segments下都是一个hashTable。当put元素时,会加锁,然后计算hash和下标,计算下标会计算两次,一次是在数组中的segments的位置,一次是在hashTable的位置。

 四:JDK1.8中的ConcurrentHashMap 

JDK1.8中的ConcurrentHashMap和JDK1.8中的HashMap结构一样,只是在处理上有区别

public V put(K key, V value) {
        return putVal(key, value, false);
    }

    /** Implementation for put and putIfAbsent */
    final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());      //计算hash值
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {   //自旋
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)       //table==null || table.length==0
                tab = initTable();                          //就initTable
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {    //若下标 i 处的元素为null
                if (casTabAt(tab, i, null,                           //直接用CAS操作,i处的元素
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin   想emptybin中假如元素的时候,不需要加锁
            }
            else if ((fh = f.hash) == MOVED)    //若下标 i 处的元素不为null,且f.hash==MOVED MOVED为常量值-1
                tab = helpTransfer(tab, f);     //
            else {                              //如果是一般的节点
                V oldVal = null;
                synchronized (f) {              //当头部元素不为null,且不需要转换成树时,需要进行同步操作
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {          //若 链表头部hash值 >=0
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {     //如果key相同
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)      //且不为absent
                                        e.val = value;      //旧值覆盖新值
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null), {     //如果链表遍历完成,还没退出,说明没有相同的key存在,在尾部添加节点
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {        //如果f是Tree的节点
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }

当put元素时,会使用CAS操作,去判断数组中所要put到的位置元素是否为空,为空就修改为当前的put的元素,若CAS操作失败,那么会自旋,这个时候发现数组里已经有元素了,那么就会锁住链表或者红黑树头部,把元素放入链表或者红黑树下面 。 

五:hash冲突

当put的时候需要计算hash和下标,这个时候计算出来的值可能存在一样的,那么存到数组中的相同位置,就会发生hash冲突,

计算出的hash值一样一定会发生hash冲突,但是hash值一样的概率很小,计算出的下标值是一样的概率很大,所以hash冲突主要是由下标位置一样引起的,hashMap的解决方式是使用链地址法,即使用链表的方式解决,key一样的时候才会覆盖,否则就把元素放到链表的下一个位置。

posted on 2021-04-17 09:23  狐言不胡言  阅读(399)  评论(0编辑  收藏  举报