lagrange 插值法模板

对于n次多项式

\[\Gamma(k) = \sum_{i=0}^{n}y_i\prod_{j=0,{j}\neq {i} }^{n}\frac{k-x_j}{x_i-x_j} \]

const int mod=1e9+7;
template<class T>
T qpow(T x,int k){
    T e=1;
    while(k){
        if(k&1)e=1ll*e*x%mod;
        x=1ll*x*x%mod;
        k>>=1;
    }
    return e;
}
template<class T>
T lagrange(int n,int x[],int y[],T k){
    T ans=0;
    for(int i=0;i<=n;++i){
        T fz=1,fm=1;//分子分母
        for(int j=0;j<=n;++j){
            if(i==j)continue;
            fm=1ll*fm*(x[i]-x[j])%mod;
            fz=1ll*fz*(k-x[j])%mod;
        }
        ans=(1ll*ans+1ll*y[i]*fz%mod*qpow(fm,mod-2)%mod)%mod;
    }
    return (ans+mod)%mod;
}

在x取值连续时的做法

\(x_i\)​ 的取值都是连续的,可以把上面的算法优化到O(n)复杂度
首先把\(x_i\)换成i,新的式子为

\[f(k) = \sum_{i=0}^{n} y_i \prod_{i \not = j} \frac{k - j}{i - j}f(k) \]

对于 \(\prod_{i \not = j} ^{n}\frac{k - j}{i - j}​\) 可以优化
对于分子来说,我们维护出关于k的前缀积和后缀积,也就是

\[pre_i = \prod_{j = 0}^{i-1} k - j \]

\[suf_i = \prod_{j = i+1}^n k - j \]

对于分母来说,观察发现这其实就是阶乘的形式,我们用fac[i]来表示\(i!\)
那么式子就变成$$f(k) = \sum_{i=0}^n y_i \frac{pre_i * suf_i }{fac[i] * fac[N - i]}$$​分母可能会出现符号问题,也就是说,当N - i为奇数时,分母应该取负号

const int mod=1e9+7;
template<class T>
T qpow(T x,int k){
    T e=1;
    while(k){
        if(k&1)e=1ll*e*x%mod;
        x=1ll*x*x%mod;
        k>>=1;
    }
    return e;
}
int lagrange(int n,int x[],int y[],int k){
    int pre[n+1],suf[n+1],fac[n+1],ans=0;
    fac[0]=pre[0]=suf[n]=1;
    for(int i=1; i<=n; ++i)pre[i]=1ll*(k-x[i-1])*pre[i-1]%mod;
    for(int i=n-1;i>=0;++i)suf[i]=1ll*(k-x[i+1])*suf[i+1]%mod;
    for(int i=1;i<=n;++i)fac[i]=1ll*i*fac[i-1]%mod;
    for(int i=0;i<=n;++i){
        int fz=1ll*pre[i]*suf[i]%mod;//分子分母
        int fm=1ll*fac[i]*fac[n-i]%mod;
        if((n-i)&1)fm=(mod-fm)%mod;
        ans=(1ll*ans+1ll*y[i]*fz%mod*qpow(fm,mod-2)%mod)%mod;
    }
    return (ans+mod)%mod;
}

2019南昌邀请赛B. Polynomial

题目链接
Define \(f_{(x)} = a_0+a_1 \times x^1 + a_2 \times x^2 +…+ a_n \times x^n\)

the number maybe tremendous huge, so take the module of 9999991.

For a polynomial, XH doesn't know any \(a_i\) ​ , but he knows the value of \(f_{(0)} , f_{(1)}, f_{(2)}…f_{(n)}\) . He wants to calculate \(\displaystyle\sum_{i=L}^R f_{(i)}\) mod 9999991.

Input

The first line contains a number \(T ( 1 \le T \le 5 )\) ——the number of test cases.

For each test case. The first line contains two integers \(n (1 \le n \le 1000)\) and \(m(1 \le m \le 2000)\).

The second line contains n+1 integers,representing the value of \(f_{(0)} , f_{(1)}, f_{(2)}…f_{(n)}\)

The next mm lines, each line contains two integers L, R.

\(( 1 \le L \le R \le 9999990)\)

Output

For each test case, output m lines, each line contains one integer, the value of \(isplaystyle\sum_{i=L}^R f_{(i)}\) mod 9999991.

样例输入

1 
3 2
1 10 49 142
6 7 
95000 100000 

样例输出

2519 
1895570 

题意就是知道(0, \(f_0\)) , (1, \(f_1\)) ... (n, \(f_n\)) n+1个点,求\(S(k)=\sum_{i=0}^k f(i)\)
由n+1个点可求得 \(f(n+1)\)
再由\(S(k)-S(k-1)=f(k)\)可知,\(S(k)=\sum_{i=0}^k f(i)\)是n+1次多项式
且我们可以求出这n+2个点,分别是
(0, \(f_0\)) , (1, \(f_0+f_1\)), ..., (n, \(f_0+f_0+... +f_n\)), (n, \(f_0+f_0+... +f_n+f_{n+1})\)
这样,求出\(S(k)\) 之后
\(S(r)-S(l-1)\)即为答案。
代码:

#include<bits/stdc++.h>
using namespace std;
char buf[100000],*L=buf,*R=buf;
#define gc() L==R&&(R=(L=buf)+fread(buf,1,100000,stdin),L==R)?EOF:*L++
template<typename T>
inline void read(T&x) {
    int flag=x=0;
    char ch=gc();
    while (ch<'0'||ch>'9')flag|=ch=='-',ch=gc();
    while (ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-48,ch=gc();
    if(flag)x=-x;
}
#define Init(arr,val) memset(arr,val,sizeof(arr))
const int inf=0x3f3f3f3f,mod=9999991,MAXN=1020;
typedef long long ll;//鬼畜数据,只能全部用ll,不然一个点都过不了,浪费了了我一下午。。。。
template<class T>
T qpow(T x,int k) {
    T e=1;
    while(k) {
        if(k&1)e=1ll*e*x%mod;
        x=1ll*x*x%mod;
        k>>=1;
    }
    return e%mod;
}
ll fac[MAXN],ffa[MAXN];
//fac是阶乘
//ffa是分母,对于m次询问,都是相同的分母,保存起来,
//因为S(x) 已经确定,分母里的快速幂只需求一次即可,不然坑爹数据一个点也过不了
ll lagrange(ll n,ll x[],ll y[],ll k) {
    ll pre[MAXN],suf[MAXN],ans=0;
    fac[0]=pre[0]=suf[n]=1;
    for(int i=1; i<=n; ++i)pre[i]=1ll*(k-x[i-1])*pre[i-1]%mod;
    for(int i=n-1; i>=0; --i)suf[i]=1ll*(k-x[i+1])*suf[i+1]%mod;
    for(int i=0; i<=n; ++i) {
        ll fz=1ll*pre[i]*suf[i]%mod;
        ans=(1ll*ans+1ll*y[i]*fz%mod*ffa[i]%mod)%mod;
    }
    return (ans+mod)%mod;
}

int main() {
    fac[0]=1;
    for(int i=1; i<MAXN; ++i)fac[i]=1ll*i*fac[i-1]%mod;
    ll n,m,x[MAXN],y[MAXN];
    int t;
    read(t);
    while(t--) {
        read(n),read(m);
        for(int i=0; i<=n; ++i) {
            x[i]=i;
            read(y[i]);
        }
        for(int i=0; i<=n; ++i) {//f(x)
        	ll fm=1ll*fac[i]*fac[n-i]%mod;
         	if((n-i)&1)fm=(mod-fm)%mod;
            ffa[i]=1ll*qpow(fm,mod-2)%mod;
   		}
        y[n+1]=lagrange(n,x,y,n+1);//f(n+1)
        x[n+1]=n+1;
        for(int i=1; i<=n+1; ++i)y[i]+=y[i-1];//前缀和就是S(x)个点的y值
        for(int i=0; i<=n+1; ++i) {//m次查询,分母记录下来,求一次即可
        	ll fm=1ll*fac[i]*fac[n+1-i]%mod;
         	if((n+1-i)&1)fm=(mod-fm)%mod;
            ffa[i]=1ll*qpow(fm,mod-2)%mod;
   		}
        while(m--) {
            ll l,r;
            read(l),read(r);
            printf("%lld\n",(lagrange(n+1,x,y,r)-lagrange(n+1,x,y,l-1)+mod)%mod);
        }
    }
    return 0;
}
posted @ 2020-12-16 17:13  肆之月  阅读(97)  评论(0编辑  收藏  举报