GICV3中断控制器调用流程

GICV3中断控制器初始化调用链

image

/kernel/irq/handle.c:
#ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
int __init set_handle_irq(void (*handle_irq)(struct pt_regs *))
{
    if (handle_arch_irq)
        return -EBUSY;

    handle_arch_irq = handle_irq;
    return 0;
}
#endif
/drivers/irqchip/irq-gic-v3.c:
static int __init gic_init_bases(void __iomem *dist_base,
                 struct redist_region *rdist_regs,
                 u32 nr_redist_regions,
                 u64 redist_stride,
                 struct fwnode_handle *handle)
{
... ...
    set_handle_irq(gic_handle_irq);
... ...
}
/drivers/irqchip/irq-gic-v3.c:

IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);

static int __init gic_of_init(struct device_node *node, struct device_node *parent)
{
... ...
    err = gic_init_bases(dist_base, rdist_regs, nr_redist_regions,
                 redist_stride, &node->fwnode);
... ....
}
/include/linux/irqchip.h:
#define IRQCHIP_DECLARE(name, compat, fn) OF_DECLARE_2(irqchip, name, compat, fn)

/include/linux/of.h:
#define OF_DECLARE_2(table, name, compat, fn) \
        _OF_DECLARE(table, name, compat, fn, of_init_fn_2)
        
#define _OF_DECLARE(table, name, compat, fn, fn_type)            \
    static const struct of_device_id __of_table_##name        \
        __used __section(__##table##_of_table)            \
         = { .compatible = compat,                \
             .data = (fn == (fn_type)NULL) ? fn : fn  }
/arch/arm64/kernel/vmlinux.lds:
 .init.data : {
 ... ...
 . = ALIGN(8); __irqchip_of_table = .; KEEP(*(__irqchip_of_table)) KEEP(*(__irqchip_of_table_end)) . = ALIGN(8);
 ... ...
 }
/drivers/irqchip/irqchip.c:

void __init irqchip_init(void)
{
    of_irq_init(__irqchip_of_table);
    acpi_probe_device_table(irqchip);
}
/arch/arm64/kernel/irq.c:
void __init init_IRQ(void)
{
    init_irq_stacks();
    irqchip_init();
... ...
}
asmlinkage __visible void __init start_kernel(void)
{
... ...
init_IRQ();
... ...
}

中断的处理过程

中断调用流程

异常向量表vectors

/arch/arm64/kernel/entry.S:
ENTRY(vectors)
    kernel_ventry    1, sync_invalid            // Synchronous EL1t
    kernel_ventry    1, irq_invalid            // IRQ EL1t
    kernel_ventry    1, fiq_invalid            // FIQ EL1t
    kernel_ventry    1, error_invalid        // Error EL1t

    kernel_ventry    1, sync                // Synchronous EL1h
    kernel_ventry    1, irq                // IRQ EL1h
    kernel_ventry    1, fiq_invalid            // FIQ EL1h
    kernel_ventry    1, error            // Error EL1h

    kernel_ventry    0, sync                // Synchronous 64-bit EL0
    kernel_ventry    0, irq                // IRQ 64-bit EL0
    kernel_ventry    0, fiq_invalid            // FIQ 64-bit EL0
    kernel_ventry    0, error            // Error 64-bit EL0

#ifdef CONFIG_COMPAT
    kernel_ventry    0, sync_compat, 32        // Synchronous 32-bit EL0
    kernel_ventry    0, irq_compat, 32        // IRQ 32-bit EL0
    kernel_ventry    0, fiq_invalid_compat, 32    // FIQ 32-bit EL0
    kernel_ventry    0, error_compat, 32        // Error 32-bit EL0
#else
    kernel_ventry    0, sync_invalid, 32        // Synchronous 32-bit EL0
    kernel_ventry    0, irq_invalid, 32        // IRQ 32-bit EL0
    kernel_ventry    0, fiq_invalid, 32        // FIQ 32-bit EL0
    kernel_ventry    0, error_invalid, 32        // Error 32-bit EL0
#endif
END(vectors)

el1_irq

/arch/arm64/kernel/entry.S:
    .align    6
el1_irq:
    kernel_entry 1
    gic_prio_irq_setup pmr=x20, tmp=x1
    enable_da_f

#ifdef CONFIG_ARM64_PSEUDO_NMI
    test_irqs_unmasked    res=x0, pmr=x20
    cbz    x0, 1f
    bl    asm_nmi_enter
1:
#endif

#ifdef CONFIG_TRACE_IRQFLAGS
    bl    trace_hardirqs_off
#endif

    irq_handler

#ifdef CONFIG_PREEMPT
    ldr    x24, [tsk, #TSK_TI_PREEMPT]    // get preempt count
alternative_if ARM64_HAS_IRQ_PRIO_MASKING
    /*
     * DA_F were cleared at start of handling. If anything is set in DAIF,
     * we come back from an NMI, so skip preemption
     */
    mrs    x0, daif
    orr    x24, x24, x0
alternative_else_nop_endif
    cbnz    x24, 1f                // preempt count != 0 || NMI return path
    bl    arm64_preempt_schedule_irq    // irq en/disable is done inside
1:
#endif

#ifdef CONFIG_ARM64_PSEUDO_NMI
    /*
     * When using IRQ priority masking, we can get spurious interrupts while
     * PMR is set to GIC_PRIO_IRQOFF. An NMI might also have occurred in a
     * section with interrupts disabled. Skip tracing in those cases.
     */
    test_irqs_unmasked    res=x0, pmr=x20
    cbz    x0, 1f
    bl    asm_nmi_exit
1:
#endif

#ifdef CONFIG_TRACE_IRQFLAGS
#ifdef CONFIG_ARM64_PSEUDO_NMI
    test_irqs_unmasked    res=x0, pmr=x20
    cbnz    x0, 1f
#endif
    bl    trace_hardirqs_on
1:
#endif

    kernel_exit 1
ENDPROC(el1_irq)

el0_irq

    .align    6
el0_irq:
    kernel_entry 0
el0_irq_naked:
    gic_prio_irq_setup pmr=x20, tmp=x0
    ct_user_exit_irqoff
    enable_da_f

#ifdef CONFIG_TRACE_IRQFLAGS
    bl    trace_hardirqs_off
#endif

#ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
    tbz    x22, #55, 1f
    bl    do_el0_irq_bp_hardening
1:
#endif
    irq_handler

#ifdef CONFIG_TRACE_IRQFLAGS
    bl    trace_hardirqs_on
#endif
    b    ret_to_user
ENDPROC(el0_irq)

irq_handler

/arch/arm64/kernel/entry.S:
/*
 * Interrupt handling.
 */
    .macro    irq_handler
    ldr_l    x1, handle_arch_irq
    mov    x0, sp
    irq_stack_entry
    blr    x1
    irq_stack_exit
    .endm

gic_handle_irq

/drivers/irqchip/irq-gic-v3.c:
static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
{
    u32 irqnr;

    irqnr = gic_read_iar();
... ...

    /* Check for special IDs first */
    if ((irqnr >= 1020 && irqnr <= 1023))
        return;

    /* Treat anything but SGIs in a uniform way */
    if (likely(irqnr > 15)) {
... ...
        err = handle_domain_irq(gic_data.domain, irqnr, regs);
... ...
    }
    if (irqnr < 16) {
        gic_write_eoir(irqnr);
        if (static_branch_likely(&supports_deactivate_key))
            gic_write_dir(irqnr);
#ifdef CONFIG_SMP
        /*
         * Unlike GICv2, we don't need an smp_rmb() here.
         * The control dependency from gic_read_iar to
         * the ISB in gic_write_eoir is enough to ensure
         * that any shared data read by handle_IPI will
         * be read after the ACK.
         */
        handle_IPI(irqnr, regs);
#else
        WARN_ONCE(true, "Unexpected SGI received!\n");
#endif
    }
}

中断状态

中断状态切换

  1. 硬件触发中断信号,中断assert,GIC标记中断为PENDING状态。
  2. GIC中distributor选择优先级最高的PENDING中断,发送给CPU interface, CPU interface对优先级进行判定,然后GIC发送中断请求信号给CPU, CPU进入中断异常后,通过GICC_IAR读取硬中断号,中断进入ACTIVE状态。
  3. 硬件触发新的中断信号,中断assert, GIC标记中断为ACTIVE_AND_PENDING状态
  4. CPU完成中断处理,发送EIO信号到GIC(写EOIR寄存器)

需要注意的是,INACTIVE PENDING ACTIVE ACTIVE_AND_PENDING,在此例中均属于GIC硬件所标记的中断状态,另外当GIC中断信号处于PENDING状态时,硬件外设无法发送新的中断信号给GIC中断控制器。事实上中断属异步通知并且没有排队的概念。

posted @ 2024-07-18 17:22  StepForwards  阅读(85)  评论(0编辑  收藏  举报