$HDU4864\ Task$ 贪心

$HDOJ$

 

$Description$

 

$Sol$

$yi<=100$,而收益为$xi*500+yi*2$,说明无论在何种情况下,$xi$较大的产品产生的收益一定大于$xi$较小的产品.随便证下:

$xi=xj+1,yi=0,yj=100$这种极值情况都满足,所以就$OK$辣

所以将按照$xi$为第一关键字,$yi$为第二关键字从大到小排序,对于每一个产品,找到工作时间不小于$xi$并且等级最小的机器完成它.

考虑正确性似乎就只要看这样贪心会不会造成完成的产品数量减少.

不会!假设这里有两个产品$i,j$.分两种情况讨论一下:

1) $xi>xj,yi>yj$

$i$机器可选但没选的机器在时间上肯定能完成$j$,又因为$i$选了等级最小的,所以剩下的在等级上也肯定能完成$j$.如果没有剩下的,说明本来最多就只能完成$i,j$中的一个,那显然选$i$收益更大

2) $xi>xj,yi<yj$ 和上面差不多

$over!$

再讲下实现叭,想完上面的之后,立马就可以想到$O(nm)$大暴力$ovo$,显然过不了.所以我们要维护一个数组,里面存的机器的$x$是大于等于当前任务的$x$的.(套路叭,先排排序,然后按照一定要求向候选集合里面加入元素,再维护些别的).然后发现只要找到最小的$y$就好了.于是就用了一个桶排之类的数组,下标为$y$,值为个数...

讲的很凌乱因为下课了我要出去吃东西了$qwq$.

 

$Code$

 

#include<bits/stdc++.h>
#define il inline
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;i++)
#define yes(i,a,b) for(Rg int i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define db double
#define inf 1e7
using namespace std;
il int read()
{
    int x=0,y=1;char c=getchar();
    while(c<'0'||c>'9'){if(c=='-')y=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
    return x*y;
}
const int N=100010;
int n,m,as1,sum[110];ll as;
bool f[N];
struct node{int x,y;}a[N],b[N];
il bool cmp(node x,node y){if(x.x==y.x)return x.y>y.y;return x.x>y.x;}
int main()
{
    while(cin>>n>>m)
    {
        as=as1=0;mem(sum,0);
        go(i,1,n)a[i]=(node){read(),read()};
        go(i,1,m)b[i]=(node){read(),read()};
        sort(a+1,a+n+1,cmp);
        sort(b+1,b+m+1,cmp);
        Rg int j=1;
        go(i,1,m)
        {
            while(j<=n && a[j].x>=b[i].x)sum[a[j++].y]++;
            go(k,b[i].y,100)if(sum[k]){as1++;as+=b[i].x*500+b[i].y*2;sum[k]--;break;}
        }
        printf("%d %lld\n",as1,as);
    }
    return 0;
}
View Code

 

 

 

posted @ 2019-08-16 22:36  DTTTTTTT  阅读(166)  评论(0编辑  收藏  举报