$20200203$的数学作业
典型例题
1.
证明:
由题可知\(A(-2, 0)\)
设\(D(x_0, y_0)\ (x_0 \neq \pm 2)\),则\(E(-x_0, -y_0)\),且\(\frac{x_0^2}{4} + y_0^2 = 1\)
则由题有\(AD: y = \frac{y_0}{x_0 + 2} (x + 2) \Rightarrow M(0, \frac{2y_0}{x_0 + 2})\)
同理\(AE: y = \frac{y_0}{x_0 - 2} (x + 2) \Rightarrow M(0, \frac{2y_0}{x_0 - 2})\)
设以\(MN\)为直径的圆与\(x\)轴交于\(P(x', 0)\)和\(Q(-x', 0)\),不妨令\(x' > 0\)
那么\(\vec{PM} = (-x', \frac{2y_0}{x_0 + 2})\),\(\vec{PN} = (-x', \frac{2y_0}{x_0 - 2})\)
\(\vec{PM} \cdot \vec{PN} = x'^2 + \frac{4y_0^2}{x_0^2 - 4} = 0\)
代入\(\frac{x_0^2}{4} + y_0^2 = 1\),整理可得\(x' = 1\) \(\Rightarrow\)\(\lvert PQ \rvert = 2\)
即以\(MN\)为直径的圆被\(x\)轴截的的弦长恒为定值\(2\)
\(\blacksquare\)
2.
解:
设\(M(x_1, y_1)\),\(N(x_2, y_2)\)
I
若\(k = 0\)
由题易知\(m \in (-\sqrt{3}, \sqrt{3})\)
II
若\(k \neq 0\) \(\Rightarrow l: y = -\frac{1}{k} x - \frac{1}{2}\)
将\(y = kx + m\)代入椭圆方程,整理得
其中
由韦达定理,
设\(MN\)的中点为\(P\),则\(P(-\frac{4km}{4k^2 + 3}, \frac{3m}{4k^2 + 3})\),故有
整理得\(4k^2 + 3 = 2m\) \(\Rightarrow\) \(2m > m^2\) \(\Rightarrow\) \(0 < m < 2\)
上述方程又可化为\(2m - 3 = 4k^2 > 0\) \(\Rightarrow\) \(m > \frac{3}{2}\) \(\Rightarrow\) \(\frac{3}{2} < m < 2\)
此时,若\(y = kx + m\)过左顶点 \(\Rightarrow\) \(m = 2k\) \(\Rightarrow\) \((2k^2 - 1)^2 = -2\) \(\Rightarrow\) 无解
故\(y = kx + m\)不过左顶点,由对称性可得其不过右顶点
即此时\(m \in (\frac{3}{2}, 2)\)
综上所述,\(m \in (-\sqrt{3}, 2)\)
课堂练习
1.
解:
由题可知\(P(0, 2) \Rightarrow M(0, 1)\)
设\(A(x_1, y_1)\),\(B(x_2, y_2)\)
I
若\(l\)的斜率存在
设\(l: y = kx + 1\),代入椭圆方程,整理得
其中
由几何关系易知
由韦达定理,
代入,整理得\(k = \frac{3}{8}\) \(\Rightarrow\) \(l: 3x - 8y + 8 = 0\)
II
若\(l\)斜率不存在
此时显然满足\(\Rightarrow l: x = 0\)
综上所述,\(l: 3x - 8y + 8 = 0\)或\(l: x = 0\)
2.
证明:
由几何关系易知\(PA \perp PB\)
I
若\(PA \perp x\)轴
此时\(PA: x = 3\)或\(PA: x = -3\) \(\Rightarrow\) \(PB: y = 2\)或\(PB: y = -2\)
易知\(PB\)与\(C\)相切
II
若\(PA \perp y\)轴
由I
易知此时\(PB\)与\(C\)相切
III
若\(PA\)与\(x\)轴和\(y\)均不垂直
设\(P(x_0, y_0)\),\(PA: y - y_0 = k(x - x_0)\),则\(PB: y - y_0 = -\frac{1}{k} (x - x_0)\)
将\(PA\)代入\(C\),整理得
\(PA\)与\(C\)相切\(\Rightarrow\)\(\Delta_1 = [18k(y_0 - kx_0)]^2 - 4(9k^2 + 4)[9(y_0 - kx_0)^2 - 36] = 0\) \(\Rightarrow\) \((x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4 = 0\)
将\(PB\)代入\(C\),整理求得\(\Delta_2 = \frac{x_0^2 - 9}{k^2} + \frac{2x_0y_0}{k} + y_0^2 - 4\)
又\(x_0^2 + y_0^2 = 13\) \(\Rightarrow\) \(\Delta_2 = -\frac{144[(x_0^2 - 9)k^2 + 2x_0y_0k + y_0^2 - 4]}{k^2} = 0\)
故此时\(PB\)与\(C\)相切
综上所述,直线\(PB\)与椭圆\(C\)相切
\(\blacksquare\)
课后作业
1.
解:
若\(\Delta ABC\)为正三角形,则\(AB \perp OC\)且\(\sqrt{3} \lvert OA \rvert = \lvert OC \rvert\)
由几何关系易知\(AB\)的斜率存在且不为\(0\)
故可设\(AB: y = kx\),则\(OC: y = -\frac{1}{k} x\)
将\(AB\)代入\(\Gamma\),整理可得
故\(\lvert OA \rvert = \sqrt{x^2 + y^2} = \sqrt{\frac{30(k^2 + 1)}{5k^2 + 3}}\),同理\(\lvert OC \rvert = \sqrt{\frac{30(k^2 + 1)}{3k^2 + 5}}\)
又\(\sqrt{3} \lvert OA \rvert = \lvert OC \rvert\)
代入整理得\(k^2 = -3\) \(\Rightarrow\) 无实数解
故\(\Delta ABC\)不可能为正三角形
2.
解:
由题,\(C(1, 0)\),\(E(-m, n)\)
则\(CD: y = \frac{n}{m - 1} (x - 1)\) \(\Rightarrow\) \(M(0, \frac{n}{1 - m})\);\(CE: y = -\frac{n}{m + 1} (x - 1)\) \(\Rightarrow\) \(N(0, \frac{n}{1 + m})\)
设\(Q(t, 0)\),则\(\tan \angle OQM = \lvert \frac{n}{(m - 1)t} \rvert\),\(\tan \angle ONQ = \lvert \frac{(m + 1)t}{n} \rvert\)
则由题有
故存在\(Q\),且\(Q(\sqrt{2}, 0)\)或\(Q(-\sqrt{2}, 0)\)
3.
解:
由题可知,\(A(1, 0)\),\(AP\)的斜率存在且不为\(0\)
故可设\(AP: my = x - 1\),其中\(m \neq 0\),代入\(l\)得\(P(-1, -\frac{2}{m})\),\(Q(-1, \frac{2}{m})\)
将\(AP\)代入椭圆方程,解得\(y = 0\)或\(-\frac{6m}{3m^2 + 4}\)
\(B\)异于点\(A\)\(\Rightarrow\)\(B(\frac{4 - 3m^2}{3m^2 + 4}, -\frac{6m}{3m^2 + 4})\)
故\(BQ: \frac{8}{3m^2 + 4} (y - \frac{2}{m}) = -\frac{12m^2 + 8}{m(3m^2 + 4)} (x + 1)\) \(\Rightarrow\) \(D(\frac{2 - 3m^2}{3m^2 + 2}, 0)\)
\(\Rightarrow \lvert AD \rvert = \frac{6m^2}{3m^2 + 2}\)
故\(S_{\Delta APD} = \frac{6m^2}{3m^2 + 2} \cdot \frac{2}{\lvert m \rvert} \div 2 = \frac{\sqrt{6}}{2}\)
整理得\(3 \lvert m \rvert ^2 - 2 \sqrt{6} \lvert m \rvert + 2 = 0\) \(\Rightarrow\) \(\lvert m \rvert = \frac{\sqrt{6}}{3}\) \(\Rightarrow\) \(m = \pm \frac{\sqrt{6}}{3}\)
故\(AP: 3x + \sqrt{6} y - 3 = 0\)或\(3x - \sqrt{6} y - 3 = 0\)