20200202的数学作业

典型例题

1.

解:

\((1)\)

由题易知,\(P_3\)不在\(C\)\(\Leftrightarrow\)\(P_4\)不在\(C\)

此结论与已知条件矛盾,故\(P_3\)\(P_4\)都在\(C\)上,\(P_1\)不在\(C\)

则可得\(\frac{1}{a^2} + \frac{3}{4b^2} = 1\)

\[\begin{cases} \begin{aligned} & \frac{1}{a^2} + \frac{3}{4b^2} = 1 \\ & \frac{0}{a^2} + \frac{1}{b^2} = 1 \end{aligned} \end{cases} \]

解得

\[\begin{cases} \begin{aligned} & a^2 = 4 \\ & b^2 = 1 \end{aligned} \end{cases} \]

\(C: \frac{x^2}{4} + y^2 = 1\)

证明:

\((2)\)

\(A(x_1, y_1)\)\(B(x_2, y_2)\)

i.\(l\)的斜率存在

\(l: y = kx + b\),代入\(C\),整理得

\[(4k^2 + 1)x^2 + 8kbx + 4b^2 - 4 = 0 \]

其中

\[\begin{aligned} \Delta & = (8kb)^2 - 4(4k^2 + 1)(4b^2 - 4) \\ & = 64k^2 - 16b^2 + 16 > 0 \Rightarrow 4k^2 + 1 > b^2 \end{aligned} \]

由题有

\[\begin{aligned} k_{P_2A} + k_{P_2B} & = -1 \\ \frac{y_1-1}{x_1} + \frac{y_2-1}{x_2} & = -1 \\ \frac{2kx_1x_2 + (b - 1)(x_1 + x_2)}{x_1x_2} & = -1 \end{aligned} \]

由韦达定理

\[\begin{cases} \begin{aligned} & x_1 + x_2 = -\frac{8kb}{4k^2 + 1} \\ & x_1x_2 = \frac{4b^2 - 4}{4k^2 + 1} \end{aligned} \end{cases} \]

代入整理得\(b = -2k - 1\)

\(l: y + 1 = k(x - 2)\)

即此时\(l\)过定点\((2, -1)\)

ii.\(l\)的斜率不存在

\(l: x = t\),此时\(x_1 = x_2 \neq 0\)\(y_1 = -y_2\)

则有\(k_{P_2A} + k_{P_2B} = \frac{y_1 - 1}{t} + \frac{-y_1 - 1}{t} = \frac{-2}{t} = -1\)

\(m = 2\)

\(\Rightarrow\)此时\(l\)过椭圆右顶点,不存在两个交点

\(\Rightarrow\)舍去


综上所述,直线\(l\)恒过定点\((2, -1)\)

\(\blacksquare\)


2.

证明:

\(P(x_0, y_0)\),则\(Q(-x_0, -y_0)\)

由题,有\(\frac{x^2_0}{4} + \frac{y^2_0}{2} = 1 \Leftrightarrow x^2_0 + 2y^2_0 = 4\)成立

\(A(-2, 0)\) \(\Rightarrow\) \(PA: y = \frac{y_0}{x_0 + 2} (x + 2)\)

\(M(0, \frac{2y_0}{x_0 + 2})\)\(PA: y = \frac{y_0}{x_0 - 2} (x + 2)\)

\(N(0, \frac{2y_0}{x_0 - 2})\)

则以\(MN\)为直径的圆为

\[x^2 + (y - \frac{2y_0}{x_0 + 2})(y - \frac{2y_0}{x_0 - 2}) = 0 \]

代入\(x^2_0 + 2y^2_0 = 4\)并整理得

\[x^2 + y^2 + \frac{2x_0}{y_0} y - 2 = 0 \]

\(y = 0\),解得\(x = \pm \sqrt{2}\)

故以线段\(MN\)为直径的圆恒过顶点\((\sqrt{2}, 0)\)\((-\sqrt{2}, 0)\)

\(\blacksquare\)

课堂练习

1.

解:

\((2, 1)\)代入\(C\),解得\(p = 2\) \(\Rightarrow\) \(C: x^2 = 4y\)

\(A(x_1, y_1)\)\(B(x_2, y_2)\),则\(A'(-x_1, y_1)\)

由题,\(l\)的斜率一定存在

故可设\(l: y = kx - 1\),代入\(C\),整理得

\[x^2 -4kx +4 = 0 \]

其中

\[\begin{aligned} \Delta & = (-4k)^2 - 4 \cdot 1 \cdot 4 \\ & = 16(k^2 - 1) > 0 \Rightarrow k^2 > 1 \end{aligned} \]

\[k_{A'B} = \frac{y_2 - y_1}{x_2 - (-x_1)} = \frac{\frac{x^2_2}{4} - \frac{x^2_1}{4}}{x_1 + x_2} = \frac{x_2 - x_1}{4} \]

\(A'B: y - \frac{x^2_2}{4} = \frac{x_2 - x_1}{4} (x - x_2)\)

\(A'B: y = \frac{x_2 - x_1}{4} x + 1\)

即直线\(A'B\)恒过定点\((0, 1)\)

\(\blacksquare\)


2.

解:

\(\vec{MS} = \vec{SN}\)\(\vec{PT} = \vec{TQ}\) \(\Rightarrow\) \(S\)\(MN\)中点,\(T\)\(PQ\)中点

\(P(x_1, y_1)\)\(Q(x_2, y_2)\)\(M(x_3, y_3)\)\(N(x_4, y_4)\)

i. 若两直线斜率皆存在

\(l_1: y = k(x - 1)\),则\(l_2: y = -\frac{1}{k} (x - 1)\)

\(l_1\)代入\(C\),整理得

\[(2k^2 + 1)x^2 - 4k^2x + 2k^2 - 4 = 0 \]

其中

\[\begin{aligned} \Delta & = (-4k^2)^2 - 4(2k^2 + 1)(2k^2 - 4) \\ & = 8(3k^2 + 2) > 0 \end{aligned} \]

由韦达定理,

\[\begin{cases} \begin{aligned} & x_1 + x_2 = \frac{4k^2}{2k^2 + 1} \\ & x_1x_2 = \frac{2k^2 - 4}{2k^2 + 1} \end{aligned} \end{cases} \]

\(T(\frac{2k^2}{2k^2 + 1}, \frac{-k}{2k^2 + 1})\),同理可得\(S(\frac{2}{k^2 + 2}, \frac{k}{k^2 + 2})\)

\(\Rightarrow\)\(k_{ST} = \frac{-3k}{2(k^2 - 1)}\)

\(\Rightarrow\)\(ST: y + \frac{k}{2k^2 + 1} = \frac{-3k}{2(k^2 - 1)} (x - \frac{2k^2}{2k^2 + 1})\)

\(ST: y = \frac{-3k}{2(k^2 - 1)} (x - \frac{2}{3})\)

即此时\(ST\)恒过定点\((\frac{2}{3}, 0)\)

ii. 若两直线斜率分别为\(0\)和不存在

此时其中一条直线的方程为\(y = 0\)\((\frac{2}{3}, 0)\)

综上所述,直线\(ST\)恒过定点\((\frac{2}{3}, 0)\)

课后作业

1.

证明:

由题,\(l_1\)\(l_2\)的斜率一定存在且不为\(0\)

\(l_1: y = k(x - 12) + 8\),则\(l_2: y = \frac{1}{k} (x - 12) + 8\)

\(l_1\)代入\(\Gamma\),整理得

\[ky^2 - 4y - 48k + 32 = 0 \]

其中

\[\begin{aligned} \Delta & = (-4)^2 - 4k(32 - 48k) \\ & = 16(2k - 1)(6k - 1) > 0 \Rightarrow k \in (-\infty, \frac{1}{6}) \cup (\frac{1}{2}, +\infty) \end{aligned} \]

同理有\(\frac{1}{k} \in (-\infty, \frac{1}{6}) \cup (\frac{1}{2}, +\infty)\)

综上有\(k \in (-\infty, 0) \cup (\frac{1}{2}, 2) \cup (6, +\infty)\)

由韦达定理,

\[\begin{cases} \begin{aligned} & y_C + y_D = \frac{4}{k} \\ & y_Cy_D = \frac{32 - 48k}{k} \end{aligned} \end{cases} \]

\(x_C + x_D = 24 + \frac{4}{k^2} - \frac{16}{k}\) \(\Rightarrow\) \(M(12 + \frac{2}{k^2} - \frac{8}{k}, \frac{2}{k})\)

同理可得\(N(12 + 2k^2 - 8k, 2k)\)

故可求得\(k_{MN} = \frac{1}{k + \frac{1}{k} - 4}\)

\(MN: y - 2k = \frac{1}{k + \frac{1}{k} - 4} [x - (2k^2 - 8k + 12)]\)

\(MN: (k + \frac{1}{k} - 4)y = x - 10\)

即直线\(MN\)恒过定点\((10, 0)\)

\(\blacksquare\)


2.

证明:

由题易知\(l\)的斜率一定存在

故可设\(l: y = kx + b\)\(M(x_1, y_1)\)\(N(x_2, y_2)\)

\(l\)代入椭圆方程,整理得

\[(2k^2 + 1)x ^ 2 + 4kbx + 2(b^2 - 1) = 0 \]

其中

\[\begin{aligned} \Delta & = (4kb)^2 - 4(2k^2 + 1)(2b^2 - 2) \\ & = 8(2k^2 - b^2 + 1) > 0 \Rightarrow 2k^2 + 1 > b^2 \end{aligned} \]

由韦达定理,

\[\begin{cases} \begin{aligned} & x_1 + x_2 = -\frac{4kb}{2k^2 + 1} \\ & x_1x_2 = \frac{2(b^2 - 1)}{2k^2 + 1} \end{aligned} \end{cases} \]

\[\begin{cases} \begin{aligned} & y_1 + y_2 = \frac{2b}{2k^2 + 1} \\ & y_1y_2 = \frac{b^2 - 2k^2}{2k^2 + 1} \end{aligned} \end{cases} \]

由题可知\(\vec{AM} \cdot \vec{AN} = x_1x_2 + (y_1 - 1)(y_2 - 1) = 0 \Rightarrow (3b + 1)(b - 1) = 0\)

又直线不经过\(A\)\(\Rightarrow\)\(b = -\frac{1}{3}\)

故直线\(l\)恒过定点\((0, -\frac{1}{3})\)

\(\blacksquare\)


3.

解:

\((1)\)

由题,\(F(\frac{p}{2}, 0)\),则\(AB: y = \sqrt{2} (x - \frac{p}{2})\)

\(AB\)代入\(C\),整理得

\[x^2 - 2px + \frac{p^2}{4} = 0 \]

其中\(\Delta = 4p^2 - p^2 = 3p^2 > 0\)

由韦达定理,\(x_1 + x_2 = 2p\)\(x_1x_2 = \frac{p^2}{4}\)

\(\lvert AB \rvert = \sqrt{1 + 2} \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = 6 \Rightarrow p = 2\)

\(C: y^2 = 4x\)

\((2)\)

\(D(x_1, y_1)\)\(E(x_2, y_2)\)

\((1)\)\(M(4, 4)\),且\(DE\)斜率不为\(0\)

故可设\(DE: my = x + t\),代入\(C\),整理得

\[y^2 - 4my + 4t = 0 \]

其中\(\Delta = 16(m^2 - t) > 0 \Rightarrow m^2 > t\)

由韦达定理,\(y_1 + y_2 = 4m\)\(y_1y_2 = 4t\)

\(\vec{MD} \cdot \vec{ME} = x_1x_2 + (y_1 - 4)(y_2 - 4) = t^2 + 12t - 16m^2 - 16m + 32 = 0\)

\((t + 6)^2 = 4(2m + 1)^2\)\(\Rightarrow\)\(t = -4m + 4\)\(4m + 8\)

\(DE: m(y - 4) = x - 4\)(舍去)或\(DE: m(y + 4) = x - 8\)

即直线\(DE\)恒过定点\((8, -4)\)

posted @ 2020-02-02 18:23  Acenaphthene  阅读(260)  评论(0编辑  收藏  举报