20200202的数学作业
典型例题
1.
解:
\((1)\)
由题易知,\(P_3\)不在\(C\)上\(\Leftrightarrow\)\(P_4\)不在\(C\)上
此结论与已知条件矛盾,故\(P_3\),\(P_4\)都在\(C\)上,\(P_1\)不在\(C\)上
则可得\(\frac{1}{a^2} + \frac{3}{4b^2} = 1\)
解得
故\(C: \frac{x^2}{4} + y^2 = 1\)
证明:
\((2)\)
设\(A(x_1, y_1)\),\(B(x_2, y_2)\)
i.
若\(l\)的斜率存在
设\(l: y = kx + b\),代入\(C\),整理得
其中
由题有
由韦达定理
代入整理得\(b = -2k - 1\)
则\(l: y + 1 = k(x - 2)\)
即此时\(l\)过定点\((2, -1)\)
ii.
若\(l\)的斜率不存在
设\(l: x = t\),此时\(x_1 = x_2 \neq 0\),\(y_1 = -y_2\)
则有\(k_{P_2A} + k_{P_2B} = \frac{y_1 - 1}{t} + \frac{-y_1 - 1}{t} = \frac{-2}{t} = -1\)
即\(m = 2\)
\(\Rightarrow\)此时\(l\)过椭圆右顶点,不存在两个交点
\(\Rightarrow\)舍去
综上所述,直线\(l\)恒过定点\((2, -1)\)
\(\blacksquare\)
2.
证明:
设\(P(x_0, y_0)\),则\(Q(-x_0, -y_0)\)
由题,有\(\frac{x^2_0}{4} + \frac{y^2_0}{2} = 1 \Leftrightarrow x^2_0 + 2y^2_0 = 4\)成立
又\(A(-2, 0)\) \(\Rightarrow\) \(PA: y = \frac{y_0}{x_0 + 2} (x + 2)\)
故\(M(0, \frac{2y_0}{x_0 + 2})\),\(PA: y = \frac{y_0}{x_0 - 2} (x + 2)\)
故\(N(0, \frac{2y_0}{x_0 - 2})\)
则以\(MN\)为直径的圆为
代入\(x^2_0 + 2y^2_0 = 4\)并整理得
令\(y = 0\),解得\(x = \pm \sqrt{2}\)
故以线段\(MN\)为直径的圆恒过顶点\((\sqrt{2}, 0)\)和\((-\sqrt{2}, 0)\)
\(\blacksquare\)
课堂练习
1.
解:
将\((2, 1)\)代入\(C\),解得\(p = 2\) \(\Rightarrow\) \(C: x^2 = 4y\)
设\(A(x_1, y_1)\),\(B(x_2, y_2)\),则\(A'(-x_1, y_1)\)
由题,\(l\)的斜率一定存在
故可设\(l: y = kx - 1\),代入\(C\),整理得
其中
则
故\(A'B: y - \frac{x^2_2}{4} = \frac{x_2 - x_1}{4} (x - x_2)\)
即\(A'B: y = \frac{x_2 - x_1}{4} x + 1\)
即直线\(A'B\)恒过定点\((0, 1)\)
\(\blacksquare\)
2.
解:
\(\vec{MS} = \vec{SN}\),\(\vec{PT} = \vec{TQ}\) \(\Rightarrow\) \(S\)为\(MN\)中点,\(T\)为\(PQ\)中点
设\(P(x_1, y_1)\),\(Q(x_2, y_2)\),\(M(x_3, y_3)\),\(N(x_4, y_4)\)
i.
若两直线斜率皆存在
设\(l_1: y = k(x - 1)\),则\(l_2: y = -\frac{1}{k} (x - 1)\)
将\(l_1\)代入\(C\),整理得
其中
由韦达定理,
故\(T(\frac{2k^2}{2k^2 + 1}, \frac{-k}{2k^2 + 1})\),同理可得\(S(\frac{2}{k^2 + 2}, \frac{k}{k^2 + 2})\)
\(\Rightarrow\)\(k_{ST} = \frac{-3k}{2(k^2 - 1)}\)
\(\Rightarrow\)\(ST: y + \frac{k}{2k^2 + 1} = \frac{-3k}{2(k^2 - 1)} (x - \frac{2k^2}{2k^2 + 1})\)
即\(ST: y = \frac{-3k}{2(k^2 - 1)} (x - \frac{2}{3})\)
即此时\(ST\)恒过定点\((\frac{2}{3}, 0)\)
ii.
若两直线斜率分别为\(0\)和不存在
此时其中一条直线的方程为\(y = 0\)过\((\frac{2}{3}, 0)\)
综上所述,直线\(ST\)恒过定点\((\frac{2}{3}, 0)\)
课后作业
1.
证明:
由题,\(l_1\)与\(l_2\)的斜率一定存在且不为\(0\)
设\(l_1: y = k(x - 12) + 8\),则\(l_2: y = \frac{1}{k} (x - 12) + 8\)
将\(l_1\)代入\(\Gamma\),整理得
其中
同理有\(\frac{1}{k} \in (-\infty, \frac{1}{6}) \cup (\frac{1}{2}, +\infty)\)
综上有\(k \in (-\infty, 0) \cup (\frac{1}{2}, 2) \cup (6, +\infty)\)
由韦达定理,
则\(x_C + x_D = 24 + \frac{4}{k^2} - \frac{16}{k}\) \(\Rightarrow\) \(M(12 + \frac{2}{k^2} - \frac{8}{k}, \frac{2}{k})\)
同理可得\(N(12 + 2k^2 - 8k, 2k)\)
故可求得\(k_{MN} = \frac{1}{k + \frac{1}{k} - 4}\)
故\(MN: y - 2k = \frac{1}{k + \frac{1}{k} - 4} [x - (2k^2 - 8k + 12)]\)
即\(MN: (k + \frac{1}{k} - 4)y = x - 10\)
即直线\(MN\)恒过定点\((10, 0)\)
\(\blacksquare\)
2.
证明:
由题易知\(l\)的斜率一定存在
故可设\(l: y = kx + b\),\(M(x_1, y_1)\),\(N(x_2, y_2)\)
将\(l\)代入椭圆方程,整理得
其中
由韦达定理,
则
由题可知\(\vec{AM} \cdot \vec{AN} = x_1x_2 + (y_1 - 1)(y_2 - 1) = 0 \Rightarrow (3b + 1)(b - 1) = 0\)
又直线不经过\(A\)\(\Rightarrow\)\(b = -\frac{1}{3}\)
故直线\(l\)恒过定点\((0, -\frac{1}{3})\)
\(\blacksquare\)
3.
解:
\((1)\)
由题,\(F(\frac{p}{2}, 0)\),则\(AB: y = \sqrt{2} (x - \frac{p}{2})\)
将\(AB\)代入\(C\),整理得
其中\(\Delta = 4p^2 - p^2 = 3p^2 > 0\)
由韦达定理,\(x_1 + x_2 = 2p\),\(x_1x_2 = \frac{p^2}{4}\)
故\(\lvert AB \rvert = \sqrt{1 + 2} \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = 6 \Rightarrow p = 2\)
故\(C: y^2 = 4x\)
\((2)\)
设\(D(x_1, y_1)\),\(E(x_2, y_2)\)
由\((1)\),\(M(4, 4)\),且\(DE\)斜率不为\(0\)
故可设\(DE: my = x + t\),代入\(C\),整理得
其中\(\Delta = 16(m^2 - t) > 0 \Rightarrow m^2 > t\)
由韦达定理,\(y_1 + y_2 = 4m\),\(y_1y_2 = 4t\)
又\(\vec{MD} \cdot \vec{ME} = x_1x_2 + (y_1 - 4)(y_2 - 4) = t^2 + 12t - 16m^2 - 16m + 32 = 0\)
即\((t + 6)^2 = 4(2m + 1)^2\)\(\Rightarrow\)\(t = -4m + 4\)或\(4m + 8\)
故\(DE: m(y - 4) = x - 4\)(舍去)或\(DE: m(y + 4) = x - 8\)
即直线\(DE\)恒过定点\((8, -4)\)