BZOJ 4259 残缺的字符串(FFT)

 

【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4259

 

【题目大意】

  给出两个包含*和小写字母的字符串,*为适配符,可以和任何字符匹配,求出第一个字符串在第二个字符串中出现的位置。

 

【题解】

  我们定义f[x]=sum_{i=0}^{n-1}|s1[i]-s2[i]|,当f[x]=0时,两个字符串相等。因为考虑到这里还有适配符,所以用f[x]=sum_{i=0}^{n-1}(s1[i]-s2[i])*(s1[i]-s2[i])*s1[i]*s2[i]来表示匹配函数。我们可以发现,如果将一个串倒置,那么这就是一个卷积的式子。因此我们将多项式展开,将得到的相加的三段式子,做三次FFT,将结果汇总,然后统计即可。

 

【代码】

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring> 
using namespace std;
typedef long long LL;
const int N=1048600;
int n,pos[N];
namespace FFT{
    struct comp{
        double r,i;
        comp(double _r=0,double _i=0):r(_r),i(_i){}
        comp operator +(const comp&x){return comp(r+x.r,i+x.i);}
        comp operator -(const comp&x){return comp(r-x.r,i-x.i);}
        comp operator *(const comp&x){return comp(r*x.r-i*x.i,i*x.r+r*x.i);}
        comp conj(){return comp(r,-i);}
    }A[N],B[N];
    const double pi=acos(-1.0);
    void FFT(comp a[],int n,int t){
        for(int i=1;i<n;i++)if(pos[i]>i)swap(a[i],a[pos[i]]);
        for(int d=0;(1<<d)<n;d++){
            int m=1<<d,m2=m<<1;
            double o=pi*2/m2*t;
            comp _w(cos(o),sin(o));
            for(int i=0;i<n;i+=m2){
                comp w(1,0);
                for(int j=0;j<m;j++){
                    comp& A=a[i+j+m],&B=a[i+j],t=w*A;
                    A=B-t;B=B+t;w=w*_w;
                }
            }
        }if(t==-1)for(int i=0;i<n;i++)a[i].r/=n;
    }
}
int l1,l2,ans[N],cnt=0,a[N],b[N];
FFT::comp A[N],B[N],C[N];
char s1[N],s2[N];
int main(){
    scanf("%d%d",&l1,&l2);
    scanf(" %s %s",&s1,&s2);
    for(int i=0;i<l1;i++)a[l1-1-i]=s1[i]=='*'?0:s1[i]-'a'+1;
    for(int i=0;i<l2;i++)b[i]=s2[i]=='*'?0:s2[i]-'a'+1;
    int N=1; while(N<l1+l2)N<<=1;
    int j=__builtin_ctz(N)-1;
    for(int i=0;i<N;i++){pos[i]=pos[i>>1]>>1|((i&1)<<j);} 
    for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i]*a[i],0),B[i]=FFT::comp(b[i],0);
    FFT::FFT(A,N,1);FFT::FFT(B,N,1);
    for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
    for(int i=0;i<N;i++)A[i]=FFT::comp(a[i],0),B[i]=FFT::comp(b[i]*b[i]*b[i],0);
    FFT::FFT(A,N,1);FFT::FFT(B,N,1);
    for(int i=0;i<N;i++)C[i]=C[i]+A[i]*B[i];
    for(int i=0;i<N;i++)A[i]=FFT::comp(a[i]*a[i],0),B[i]=FFT::comp(b[i]*b[i],0);
    FFT::FFT(A,N,1);FFT::FFT(B,N,1);
    for(int i=0;i<N;i++)C[i]=C[i]-A[i]*B[i]*FFT::comp(2,0);
    FFT::FFT(C,N,-1);
    for(int i=l1-1;i<l2;i++){
        if(C[i].r<0.5)ans[cnt++]=i-l1+2;
    }printf("%d\n",cnt);if(cnt==0)return 0; 
    for(int i=0;i<cnt-1;i++)printf("%d ",ans[i]);
    printf("%d\n",ans[cnt-1]);
}

  

posted @ 2016-11-17 18:05  forever97  阅读(206)  评论(0编辑  收藏  举报