BZOJ 1221 [HNOI2001] 软件开发(费用流)

 

【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1221

 

【题目大意】

  每天对毛巾都有一定的需求ni,每天可以花f价值每条购买毛巾,
  当天用完的毛巾可以花费fA价值每条通过快消毒在A天之后得到一条可用的,
  也可以通过花费fB价值每条,通过慢消毒在B天之后获得可用的
  问满足每天需求所用的最小花费。

 

【题解】

  首先,我们建立X集合,表示每天用完之后需要消毒的毛巾,显然第i个点值为ni,
  建立Y集合表示每天需要的毛巾数量,第i个点为ni,
  对于X中每个点,向A天后对应Y中的每个点连流量为INF,费用为fA的边
  同时向B题后对应Y中的每个点连流量为INF,费用为fB的边
  源点向X中第i个点连ni流量0费用的边,Y中第i个点向汇点连ni流量0费用的边,
  对于购买新毛巾的操作,我们从源点向Y中每个点连INF流量f费用的边
  那么求该图的最小费用最大流就是答案。
  但是我们发现按照以上方式建图边数量非常的庞大。
  考虑建图优化,我们对于X中每个点i向i+1连边,
  而对于X向Y的连边,我们只要连到有效区间的起点即可,
  这样就等价于X中每个点,向A(B)天后对应Y中的每个点连流量为INF,费用为fA(fB)的边

  对于这道题,有一种效率更高的做法,链接:三分+贪心

 

【代码】

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int INF=0x7fffffff,N=2010;
int S,T,cnt,ans,d[N],q[N],from[N],g[N],flow;
bool in[N];
struct edge{int from,to,nxt,c,v;}e[100010];
void add(int u,int v,int w,int c){
    e[++cnt].from=u;e[cnt].to=v;
    e[cnt].nxt=g[u];g[u]=cnt;
    e[cnt].c=c;e[cnt].v=w;
}void add_edge(int u,int v,int w,int c){add(u,v,w,c);add(v,u,0,-c);}
bool spfa(){
    for(int i=S;i<=T;i++)d[i]=INF;
    int t=0,w=1;d[S]=0;in[S]=1;q[0]=S;
    while(t!=w){
        int now=q[t];t++;if(t==T)t=0;
        for(int i=g[now];i;i=e[i].nxt)
            if(e[i].v&&d[e[i].to]>d[now]+e[i].c){
                d[e[i].to]=d[now]+e[i].c;from[e[i].to]=i;
                if(!in[e[i].to]){in[e[i].to]=1;q[w++]=e[i].to;if(w==T)w=0;} 
            }in[now]=0; 
    }return(d[T]!=INF);
}
void mcf(){
    int x=INF;
    for(int i=from[T];i;i=from[e[i].from])x=min(x,e[i].v);flow+=x;
    for(int i=from[T];i;i=from[e[i].from]){e[i].v-=x;e[i^1].v+=x;ans+=e[i].c*x;}
}
int n,A,B,f,fA,fB;
void solve(){
    S=0; T=2*n+1;
    memset(g,0,sizeof(g));
    memset(e,0,sizeof(e));
    ans=flow=0; cnt=1;
    for(int i=1;i<=n;i++){
        int x;
        scanf("%d",&x);
        add_edge(S,i,x,0);
        add_edge(i+n,T,x,0);
    }for(int i=1;i<n;i++)add_edge(i,i+1,INF,0);
    for(int i=1;i<=n;i++)add_edge(S,i+n,INF,f);
    for(int i=1;i+A+1<=n;i++)add_edge(i,i+A+1+n,INF,fA);
    for(int i=1;i+B+1<=n;i++)add_edge(i,i+B+1+n,INF,fB);
    while(spfa())mcf();
    printf("%d\n",ans);
}
int main(){
    while(~scanf("%d%d%d%d%d%d",&n,&A,&B,&f,&fA,&fB))solve();
    return 0;
}
posted @ 2017-04-27 19:18  forever97  阅读(181)  评论(0编辑  收藏  举报