听听 艾薇儿 girlfriend

zoj 2969 Easy Task

ZOJ Problem Set - 2969
Easy Task

Time Limit: 1 Second      Memory Limit: 32768 KB

Calculating the derivation of a polynomial is an easy task. Given a function f(x) , we use (f(x))' to denote its derivation. We use x^n to denote xn. To calculate the derivation of a polynomial, you should know 3 rules:
(1) (C)'=0 where C is a constant.
(2) (Cx^n)'=C*n*x^(n-1) where n>=1 and C is a constant.
(3) (f1(x)+f2(x))'=(f1(x))'+(f2(x))'.
It is easy to prove that the derivation a polynomial is also a polynomial.

Here comes the problem, given a polynomial f(x) with non-negative coefficients, can you write a program to calculate the derivation of it?

Input

Standard input will contain multiple test cases. The first line of the input is a single integer T (1 <= T <= 1000) which is the number of test cases. And it will be followed by T consecutive test cases.

There are exactly 2 lines in each test case. The first line of each test case is a single line containing an integer N (0 <= N <= 100). The second line contains N + 1 non-negative integers, CN, CN-1, ..., C1, C0, ( 0 <= Ci <= 1000), which are the coefficients of f(x). Ci is the coefficient of the term with degree i in f(x). (CN!=0)

Output

For each test case calculate the result polynomial g(x) also in a single line.
(1) If g(x) = 0 just output integer 0.otherwise
(2) suppose g(x)= Cmx^m+Cm-1x^(m-1)+...+C0 (Cm!=0),then output the integers Cm,Cm-1,...C0.
(3) There is a single space between two integers but no spaces after the last integer.

Sample Input

3
0
10
2
3 2 1
3
10 0 1 2

 

Sample Output

0
6 2
30 0 1

 

Author: CAO, Peng


Source: The 5th Zhejiang Provincial Collegiate Programming Contest
Submit    Status
//Wpl
//1786815 2009-03-12 20:30:35 Accepted  2969 C++ 20 184 吴
//ZOJ 2969 Easy Task 简单积分题 08年浙江省大学生程序设计竞赛
#include <iostream>
using namespace std;
int C[105];
int main()
{
    
int t;
    scanf(
"%d",&t);
    
while(t--)
    {
        
int n,i;
        scanf(
"%d",&n);
        
for(i=0;i<=n;i++)
            scanf(
"%d",&C[i]);
        
for(i=0;i<=n;i++)
            C[i]
=C[i]*(n-i);
        
for(i=0;i<n-1;i++)
            printf(
"%d ",C[i]);
        printf(
"%d\n",C[i]);
    }
    
return 0;
}
posted @ 2009-05-12 09:58  往往  阅读(625)  评论(0编辑  收藏  举报