定理
假设 \(\eta,\eta_i\in V\) 在基 \(\alpha_1,\alpha_2,...,\alpha_n\) 下的坐标分别是 \(X\) 即 \(X_i\),\(i=1,2,...,s\). 则
- \(\eta=\theta \Leftrightarrow X=\theta\)
- \(\eta=k_1\eta_1 + k_2\eta_2+\cdots+k_s\eta_s \Leftrightarrow X=k_1X_1 + k_2X_2 + \cdots + k_sX_s\)
- \(\eta_1,\eta_2,\cdots,\eta_s\) 线性相关 \(\Leftrightarrow\) \(X_1,X_2,\cdots,X_s\) 线性相关
题目
求 \(F^{2\times 2}\) 中下述向量组的极大无关组:
\[A = [1\ 1; 2\ 2], B=[2\ -1; 0\ 3], C=[1\ -2; -2\ 1], D=[3\ -3; -2\ 4]\\
\]
解答
这是一个通过基和坐标把矩阵线性相关转变成向量线性相关的例子。取基
\[E_1=[1\ 0; 0\ 0], E_2=[0\ 1; 0\ 0], E_3=[0\ 0;1\ 0], E_4=[0\ 0;0\ 1]
\]
则 \(A,B,C,D\) 的坐标分别为
\[Z_A = [1\ 1\ 2\ 2]^T, Z_B=[2\ -1\ 0\ 3]^T, Z_C=[1\ -2\ -2\ 1]^T, Z_D=[3\ -3\ -2\ 4]^T
\]
则找 \(A,C,C,D\) 的极大无关组等价于找 \(Z_A,Z_B,Z_C,Z_D\) 的极大无关组,用把后者组成的矩阵通过初等行变化变成阶梯矩阵即可求解。