深度卷积生成对抗网络(DCGAN)原理与实现(采用Tensorflow2.x)

GAN直观理解

Ian Goodfellow 在首次提出GAN,使用了形象的比喻来介绍 GAN 模型:生成网络 G 的功能就是产生逼真的假钞试图欺骗鉴别器 D,鉴别器 D 通过学习真钞和生成器 G 生成的假钞来掌握钞票的鉴别方法。这两个网络在相互博弈中进行训练,直到生成器 G 产生的假钞使鉴别器 D 难以分辨。而DCGAN是使用卷积操作和反卷积操作来替代原始GAN中的全连接操作。

DCGAN网络结构

GAN包含生成网络(Generator, G )和判别网络(Discriminator, D ),其中 G 用于学习数据的真实分布, D 用于将 G 生成的数据与真实样本区分开。
DCGAN网络架构
生成网络 G ( z ) G(z) G(z) G 从先验分布 p z ( ⋅ ) p_z(\cdot ) pz()中采样潜变量 z ∼ p z ( ⋅ ) z\sim p_z(\cdot) zpz(),通过 G 学习分布 p g ( x ∣ z ) p_g (x|z) pg(xz),获得生成样本 x ∼   p g ( x ∣ z ) x\sim ~p_g (x|z) x pg(xz)。其中潜变量z的先验分布 p z ( ⋅ ) p_z (\cdot) pz()可以假设为常见的分布。
判别网络 D ( x ) D(x) D(x) **D**是一个二分类网络,它判断采样自真实数据分布 p r ( ⋅ ) p_r (\cdot) pr()的数据 x r ∼ p r ( ⋅ ) x_r\sim p_r(\cdot ) xrpr()和采样自生成网络的生成的数据 x f ∼ p g ( x ∣ z ) x_f\sim p_g (x|z) xfpg(xz),判别网络的训练数据集由 x r x_r xr x f x_f xf组成。真实样本 x r x_r xr的标签标为1,生成网络产生的样本 x f x_f xf标为0,通过最小化判别网络 D 的预测值与标签之间的误差来优化判别网络。

GAN训练目标

判别网络目标是分辨出真样本 x r x_r xr与假样本 x f x_f xf。它的目标是最小化预测值和真实值之间的交叉熵损失函数:
m θ i n L = C E ( D θ ( x r ) , y r , D θ ( x f ) , y f ) \underset{θ}min \mathcal L = CE(D_θ (x_r ), y_r,D_θ (x_f),y_f) θminL=CE(Dθ(xr),yr,Dθ(xf),yf)
CE表示交叉熵损失函数CrossEntropy:
L = − ∑ x r ∼ p r ( ⋅ ) l o g D θ ( x r ) − ∑ x f ∼ p g ( ⋅ ) l o g ( 1 − D θ ( x f ) ) \mathcal L = − \sum_{x_r \sim p_r (\cdot)}logD_θ (x_r ) −\sum_{x_f \sim p_g (\cdot) } log (1 − D_θ (x_f )) L=xrpr()logDθ(xr)xfpg()log(1Dθ(xf))
判别网络 D 的优化目标是:
θ ∗ = a θ r g m i n − ∑ x r ∼ p r ( ⋅ ) l o g D θ ( x r ) − ∑ x f ∼ p g ( ⋅ ) l o g ( 1 − D θ ( x f ) ) θ^∗ = \underset{θ}argmin − \sum_{x_r \sim p_r (\cdot)}logD_θ (x_r ) −\sum_{x_f \sim p_g (\cdot) } log (1 − D_θ (x_f )) θ=θargminxrpr()logDθ(xr)xfpg()log(1Dθ(xf))
m i n L min \mathcal L minL转换为 m a x − L max −\mathcal L maxL:
θ ∗ = a θ r g m a x E x r ∼ p r ( ⋅ )   l o g D θ ( x r ) + E x f ∼ p g ( ⋅ ) l o g ( 1 − D θ ( x f ) ) θ^∗ = \underset{θ}argmax \mathbb E_{x_r \sim p_r (\cdot)}\ logD_θ (x_r ) +\mathbb E_{x_f \sim p_g (\cdot) } log (1 − D_θ (x_f )) θ=θargmaxExrpr() logDθ(xr)+Exfpg()log(1Dθ(xf))
对于生成网络 G ( z ) G(z) G(z),希望生成数据能够骗过判别网络 D,假样本 x f x_f xf在判别网络的输出越接近真实的标签越好。即在训练生成网络时,希望判别网络的输出 D ( G ( z ) ) D(G(z)) D(G(z))越逼近 1 越好,最小化 D ( G ( z ) ) D(G(z)) D(G(z))与 1 之间的交叉熵损失函数:
m φ i n L = C E ( D ( G φ ( z ) ) , 1 ) = − l o g D ( G φ ( z ) ) \underset{φ}min \mathcal L= CE (D (G_φ (z)) , 1) = −logD (G_φ (z)) φminL=CE(D(Gφ(z)),1)=logD(Gφ(z))
m i n L min \mathcal L minL转换为 m a x − L max −\mathcal L maxL:
φ ∗ = a φ r g m i n L = E z ∼ p z ( ⋅ ) l o g [ 1 − D ( G φ ( z ) ) ] φ^∗ =\underset{φ} argmin \mathcal L = \mathbb E_{z\sim p_z(\cdot)}log[1 − D(G_φ(z))] φ=φargminL=Ezpz()log[1D(Gφ(z))]
其中 φ φ φ为生成网络 G 的参数。
在训练过程中迭代训练鉴别器和生成器

DCGAN实现

使用cifar10的训练集作为GAN训练集实现DCGAN。

数据加载

加载cifar10的训练集,并对数据进行预处理

import tensorflow as tf
from tensorflow import keras
import numpy as np

#批大小
batch_size = 64
(train_x,_),_ = keras.datasets.cifar10.load_data()
#数据归一化
train_x = train_x / (255. / 2) - 1
print(train_x.shape)
dataset = tf.data.Dataset.from_tensor_slices(train_x)
dataset = dataset.shuffle(1000)
dataset = dataset.batch(batch_size=batch_size, drop_remainder=True)

网络

网络由鉴别网络与生成网络构成

鉴别网络

class Discriminator(keras.Model):
    def __init__(self):
        super(Discriminator,self).__init__()
        filters = 64
        self.conv1 = keras.layers.Conv2D(filters,4,2,'valid',use_bias=False)
        self.bn1 = keras.layers.BatchNormalization()
        self.conv2 = keras.layers.Conv2D(filters*2,4,2,'valid',use_bias=False)
        self.bn2 = keras.layers.BatchNormalization()
        self.conv3 = keras.layers.Conv2D(filters*4,3,1,'valid',use_bias=False)
        self.bn3 = keras.layers.BatchNormalization()
        self.conv4 = keras.layers.Conv2D(filters*8,3,1,'valid',use_bias=False)
        self.bn4 = keras.layers.BatchNormalization()
        #全局池化
        self.pool = keras.layers.GlobalAveragePooling2D()
        self.flatten = keras.layers.Flatten()
        self.fc = keras.layers.Dense(1)

    def call(self,inputs,training=True):
        x = inputs
        x = tf.nn.leaky_relu(self.bn1(self.conv1(x),training=training))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x),training=training))
        x = tf.nn.leaky_relu(self.bn3(self.conv3(x),training=training))
        x = tf.nn.leaky_relu(self.bn4(self.conv4(x),training=training))
        x = self.pool(x)
        x = self.flatten(x)
        logits = self.fc(x)
        return logits

生成网络

class Generator(keras.Model):
    def __init__(self):
        super(Generator,self).__init__()
        filters = 64
        self.conv1 = keras.layers.Conv2DTranspose(filters*4,4,1,'valid',use_bias=False)
        self.bn1 = keras.layers.BatchNormalization()
        self.conv2 = keras.layers.Conv2DTranspose(filters*3,4,2,'same',use_bias=False)
        self.bn2 = keras.layers.BatchNormalization()
        self.conv3 = keras.layers.Conv2DTranspose(filters*1,4,2,'same',use_bias=False)
        self.bn3 = keras.layers.BatchNormalization()
        self.conv4 = keras.layers.Conv2DTranspose(3,4,2,'same',use_bias=False)

    def call(self,inputs,training=False):
        x = inputs
        x = tf.reshape(x,(x.shape[0],1,1,x.shape[1]))
        x = tf.nn.relu(x)
        x = tf.nn.relu(self.bn1(self.conv1(x),training=training))
        x = tf.nn.relu(self.bn2(self.conv2(x),training=training))
        x = tf.nn.relu(self.bn3(self.conv3(x),training=training))
        x = self.conv4(x)
        x = tf.tanh(x)
        return x

网络训练

训练时可以训练鉴别器多次然后训练一次生成器

定义损失函数

def celoss_ones(logits):
    # 计算属于与标签为1的交叉熵
    y = tf.ones_like(logits)
    loss = keras.losses.binary_crossentropy(y, logits, from_logits=True)
    return tf.reduce_mean(loss)


def celoss_zeros(logits):
    # 计算属于与标签为0的交叉熵
    y = tf.zeros_like(logits)
    loss = keras.losses.binary_crossentropy(y, logits, from_logits=True)
    return tf.reduce_mean(loss)

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):
    # 计算鉴别器的损失函数
    # 采样生成图片
    fake_image = generator(batch_z, is_training)
    # 判定生成图片
    d_fake_logits = discriminator(fake_image, is_training)
    # 判定真实图片
    d_real_logits = discriminator(batch_x, is_training)
    # 真实图片与1之间的误差
    d_loss_real = celoss_ones(d_real_logits)
    # 生成图片与0之间的误差
    d_loss_fake = celoss_zeros(d_fake_logits)
    # 合并误差
    loss = d_loss_fake + d_loss_real

    return loss


def g_loss_fn(generator, discriminator, batch_z, is_training):
	#计算生成器的损失函数
    # 采样生成图片
    fake_image = generator(batch_z, is_training)
    # 在训练生成网络时,需要迫使生成图片判定为真
    d_fake_logits = discriminator(fake_image, is_training)
    # 计算生成图片与1之间的误差
    loss = celoss_ones(d_fake_logits)

    return loss

实例化网络及优化器

#定义超参数
#潜变量维度
z_dim = 100
#epoch大小
epochs = 300
#批大小
batch_size = 64
#学习率
lr = 0.0002
is_training = True
#实例化网络
discriminator = Discriminator()
discriminator.build(input_shape=(4,32,32,3))
discriminator.summary()
generator = Generator()
generator.build(input_shape=(4,z_dim))
generator.summary()
#实例化优化器
g_optimizer = keras.optimizers.Adam(learning_rate=lr,beta_1=0.5)
d_optimizer = keras.optimizers.Adam(learning_rate=lr,beta_1=0.5)

训练

#统计损失值
d_losses = []
g_losses = []
for epoch in range(epochs):
    for _,batch_x in enumerate(dataset):
        batch_z = tf.random.normal([batch_size,z_dim])
        with tf.GradientTape() as tape:
            d_loss = d_loss_fn(generator,discriminator,batch_z,batch_x,is_training)
        grads = tape.gradient(d_loss,discriminator.trainable_variables)
        d_optimizer.apply_gradients(zip(grads,discriminator.trainable_variables))
        with tf.GradientTape() as tape:
            g_loss = g_loss_fn(generator,discriminator,batch_z,is_training)
        grads = tape.gradient(g_loss,generator.trainable_variables)
        g_optimizer.apply_gradients(zip(grads,generator.trainable_variables))

效果展示

训练测试,可以通过调整超参数来获得更好的效果。

定义可视化函数

def save_result(val_out,val_block_size,image_path,color_mode):
    def preprocessing(img):
        img = ((img + 1.0)*(255./2)).astype(np.uint8)
        return img

    preprocessed = preprocessing(val_out)
    final_image = np.array([])
    single_row = np.array([])
    for b in range(val_out.shape[0]):
        # concat image into a row
        if single_row.size == 0:
            single_row = preprocessed[b,:,:,:]
        else:
            single_row = np.concatenate((single_row,preprocessed[b,:,:,:]),axis=1)
        # concat image row to final_image
        if (b+1) % val_block_size == 0:
            if final_image.size == 0:
                final_image = single_row
            else:
                final_image = np.concatenate((final_image, single_row), axis=0)

            # reset single row
            single_row = np.array([])

    if final_image.shape[2] == 1:
        final_image = np.squeeze(final_image, axis=2)
    Image.fromarray(final_image).save(image_path)

可视化

在一定epoch后,保存生成结果

        if epoch % 2 == 0:
            batch_z = tf.random.normal([batch_size,z_dim])
            print(epoch,'d_loss:',float(d_loss),'g_loss:',float(g_loss))
            #可视化
            z = tf.random.normal([100,z_dim])
            fake_image = generator(z,training=False)
            img_path = r'gan-{}.png'.format(epoch)
            save_result(fake_image.numpy(),10,img_path,color_mode='P')
            d_losses.append(float(d_loss))
            g_losses.append(float(g_loss))

效果

训练26epoch的效果
训练26epoch的效果

小问题

tensorflow2.2训练报错

cuDNN launch failure : input shape ([64,4,4,512]) [Op:FusedBatchNormV3]

好像是批归一化层用于input层后有问题,升级tensorflow可以解决.

后记

Enjoy learning.

posted @ 2020-09-30 19:06  盼小辉丶  阅读(402)  评论(0编辑  收藏  举报