新颖性搜索(Novelty Search,NS)算法实践——利用NS算法解决迷宫导航问题

新颖性搜索(Novelty Search,NS)算法介绍

NS算法介绍详见链接

NS实现基础

要实现新颖性搜索(Novelty Search,NS),应包括保存有关所探查的新颖项信息的数据结构,以及用于维护和管理新颖项列表的结构。利用以下三个Python类进行封装:

  1. NoveltyItem:其中包含有关在进化过程中评估的个体新颖性得分的所有相关信息。
  2. NoveltyArchive:维护相关NoveltyItem实例列表的类。它提供了与已收集的NoveltyItem实例和当前种群相比评估个体基因组的新颖性得分的方法。
  3. ItemsDistance:辅助结构,用于保存两个NoveltyItem实例之间的距离(新颖性)度量值。它可用于计算平均k最近邻距离,将其用作新颖性得分值。

NovItem

此类是保存有关在进化过程中评估的每个个体的新颖性得分信息的主要结构。它具有几个存储相关信息的字段:

def __init__(self, generation=-1, genomeId=-1, fitness=-1, novelty=-1):
	# 创建实例的代际的ID
	self.generation = generation
	# 被评估基因组的ID
	self.genomeId = genomeId
	# 所评估基因组的面向目标的适应性得分(与迷宫出口的接近度)
	self.fitness = fitness
	# 评估的基因组的新颖性评分
	self.novelty = novelty
	self.in_archive = False
	# 数据点的列表,这些数据点表示迷宫求解器智能体在模拟过程中访问的特定迷宫位置的坐标。
	# 该数据列表用于估计当前新奇项和其他新奇项之间的距离。
	self.data = []

NoveltyArchive

该类维护了一系列相关的新奇项,并提供了评估单个基因组以及整个基因组总体的新颖性评分的方法。它在构造函数中定义了以下字段:

def __init__(self, threshold, metric):
	# 用于估计新颖性度量的函数引用
	self.novelty_metric = metric
	# 添加到此存档中的NoveltyItem的当前最小新奇得分
	self.novelty_threshold = threshold
	# novelty_threshold的最小可能值
	self.novelty_floor = 0.25
	# 用于novelty_threshold值的动态更改
	self.items_added_in_generation = 0
	self.time_out = 0
	# k个最近邻居的默认数量,可用于新奇评分估计
	self.neighbors = KNNNoveltyScore
	# 当前的进化世代
	self.generation = 0
	# 当前收集的所有相关NoveltyItem实例的列表
	self.novel_items = []
	# 所有对象中具有最大的面向目标适应性得分的新颖项目的列表
	self.fittest_items = []

novelty_threshold字段的动态变化取决于以下源代码:

    def _adjust_archive_settings(self):
        """
        The function to adjust the dynamic novelty threshold depending 
        on how many have NoveltyItem objects have been added to the archive recently
        """
        if self.items_added_in_generation == 0:
            self.time_out += 1
        else:
            self.time_out = 0
        # 如果在10代中未找到新的路径,则将novelty_threshold值降低5%
        if self.time_out >= 10:
            self.novelty_threshold *= 0.95
            if self.novelty_threshold < self.novelty_floor:
                self.novelty_threshold = self.novelty_floor
            self.time_out = 0
        # 如果在上一代中添加了四个以上的新奇项,则将novelty_threshold值提高20%
        if self.items_added_in_generation >= 4:
            self.novelty_threshold *= 1.2
        # reset counters
        self.items_added_in_generation = 0

在每代进化完成后调用此函数,以调整下一代的novelty_threshold字段值。该值确定了下一代应向archive中添加多少个新颖性项,以适应随着时间的推移使用NS方法查找新颖解的难度。
以下源代码显示了如何使用novelty_threshold值来确定要添加哪个NoveltyItem:

    def evaluate_individual_novelty(self, genome, genomes, n_items_map, only_fitness=False):
        if genome.key not in n_items_map:
            print("WARNING! Found Genome without novelty point associated: %s" +
                "\nNovelty evaluation will be skipped for it. Probably winner found!" % genome.key)
            return
        item = n_items_map[genome.key]
        if item.fitness == -1.0:
            return -1.0
        result = 0.0
        if only_fitness:
            result = self._novelty_avg_knn(item=item, genomes=genomes, n_items_map=n_items_map)
        else:
            result = self._novelty_avg_knn(item=item, neighbors=1, n_items_map=n_items_map)
            if result > self.novelty_threshold or len(self.novel_items) < ArchiveSeedAmount:
                self._add_novelty_item(item)
        item.novelty = result
        item.generation = self.generation
        return result

前面的代码使用函数来评估新颖性得分,以估计所提供基因组的新颖性。如果在更新存档模式下调用此函数(only_fitness = False),则将获得的新奇得分(result)与novelty_threshold字段的当前值进行比较。根据比较结果,是否将NoveltyItem对象添加到NoveltyArchive对象。此外,引入了ArchiveSeedAmount常量,以在存档仍然为空时在演化开始时使用NoveltyItem实例对存档进行初始化。

利用新颖性度量的适应度函数

新颖性得分

智能体的行为空间由运行迷宫求解模拟时通过迷宫的轨迹定义。因此,任何行为空间访问点密集的区域都不那么新颖,对求解器代理程序的奖励也更少。
最简单的衡量点稀疏度的方法是从它到k个近邻的平均距离。稀疏区域具有较高的距离值,而较稠密的区域具有较低的距离值。以下公式给出了行为空间点的稀疏性:
ρ = 1 k ∑ i = 0 k d i s t ( x , u i ) \rho = \frac 1k\sum_{i=0}^kdist(x,u_i) ρ=k1i=0kdist(x,ui)
其中, u i u_i ui是距离(新颖性) d i s t ( x , y ) dist(x,y) dist(x,y)度量计算的第i个最接近的邻居。
通过上述公式在行为空间中特定点的稀疏度计算出的新颖性分数可以由适应度函数使用。
以下函数定义了用于查找新颖性分数的Python代码:

    def _novelty_avg_knn(self, item, n_items_map, genomes=None, neighbors=None):
        distances = None
        # 判断是否包含当前种群中所有基因组的列表,若包含,则首先填充种群中所有基因组的行为特征之间的距离列表,包括来自NoveltyArchive的所有NoveltyItem对象。否则,将使用提供的新颖项(item)从NoveltyArchive查找其与所有NoveltyItem对象之间的距离
        if genomes is not None:
            distances = self._map_novelty_in_population(item=item, genomes=genomes, n_items_map=n_items_map)
        else:
            distances = self._map_novelty(item=item)
        # 按照从小到大的顺序对距离列表进行排序
        distances.sort()
        # 初始化计算k最近邻居分数所需的所有中间变量,并测试上一步中收集的距离值的数量是否大于ArchiveSeedAmount常数值
        if neighbors is None:
            neighbors = self.neighbors
        density, weight, distance_sum = 0.0, 0.0, 0.0
        length = len(distances)
        # 检查找到的距离列表的长度是否小于针对其进行测试的邻居的数量(neighbors)
        if length >= ArchiveSeedAmount:
            length = neighbors
            if len(distances) < length:
                # the number of mapped distances is less than number of neighbors
                length = len(distances)
            # 循环获取所有距离和权重之和
            i = 0
            while weight < float(neighbors) and i < length:
                distance_sum += distances[i].distance
                weight += 1.0
                i += 1
            # 由于计算出的权重值超过了指定的邻居数而导致前一个循环退出时,或者如果已经对distances列表中的所有距离值进行了迭代,则可以将给定项目的新颖性得分计算为平均距离到k个最近的邻居
            if weight > 0:
                density = distance_sum / weight
        return density

新颖性指标

新颖性指标是衡量当前解决方案与已知解决方案有多不同的一种度量。当估计从行为空间中的当前点到它的k个最近邻居的距离时,它用于计算新奇分数。
在实验中,通过两个轨迹向量(每个智能体一个向量)之间的逐项距离来确定测量行为差异的新颖性度量,轨迹矢量包含迷宫导航代理在仿真过程中访问的位置的坐标:
d i s t ( x , μ ) = 1 n ∑ j = 0 n ∣ x j − u j ∣ dist(x,\mu)=\frac 1n\sum_{j=0}^n|x_j-u_j| dist(x,μ)=n1j=0nxjuj
其中n是轨迹向量 μ j \mu_j μj x j x_j xj的大小。
在迷宫导航实验中,主要对智能体的最终位置感兴趣。因此,最终,轨迹矢量可能仅包含智能体的最终坐标。
用于新颖性度量值估计的Python代码如下:

def maze_novelty_metric(first_item, second_item):
	diff_accum = 0.0
	size = len(first_item.data)
	for i in range(size):
		diff = abs(first_item.data[i] - second_item.data[i])
		diff_accum += diff
return diff_accum / float(size)

适应度函数

对于不同任务,使用各种适合度因子:

  1. 新颖性分数用于指导神经进化过程。它被指定为每个基因组的适应度值,并在进化世代中用于基因组评估。
  2. 从迷宫模拟器获得的面向目标的适应度得分,用于测试是否已实现最终目标(即,已找到迷宫出口),记录此值以高效评估每个智能体。

适应度值评估的源代码通过两个函数提供:

  1. 回调函数,用于评估整个种群的适应性得分(eval_genomes)
  2. 通过迷宫求解过程评估单个基因组的函数(eval_individual)

种群适应度评价函数

适应度评估函数是在NEAT-Python库中注册的回调函数,允许该库针对需要解决的特定任务的特定条件对种群基因组进行评估。
NEAT-Python库不允许通过回调函数传递有关任务完成的任何信号,除非通过指定获胜者基因组的特定适应性得分值。该适应性值必须高于NEAT-Python超参数配置中的适应性阈值。但是,使用NS算法,不可能准确估计获胜者基因组可以达到的新奇分数的上限。此外,优胜者基因组的新颖性得分值可以低于在进化过程中较早时基因组获得的值。
因此,鉴于将新奇评分指定为基因组的适应度值,需要一种解决方法,以使用由NEAT-Python库定义的标准终止条件。通过使用一个特定的评分值来做到这一点,此值确定通过NEAT-Python超参数配置提供的终止条件。使用800000作为新奇得分的指示性度量,并将其自然对数(约13.59)作为适应度阈值。
该函数的完整源代码如下:

def eval_genomes(genomes, config):
	# 创建字典以存储种群中每个基因组的评估新颖性项(n_items_map)
	n_items_map = {}
	solver_genome = None
	# 遍历种群中的所有基因组,评估其迷宫求解性能
	for genome_id, genome in genomes:
		found = eval_individual(genome_id=genome_id,genome=genome,
				genomes=genomes,n_items_map=n_items_map,config=config)
		if found:
			solver_genome = genome
	trial_sim.archive.end_of_generation()
	# 遍历种群中的所有基因组,以使用估计的新颖性分数为基因组分配适应性分数。
	# 在迷宫求解模拟过程中,新颖性分数估算过程使用n_items_map中收集的NoveltyItem对象:
	for genome_id, genome in genomes:
		fitness = trial_sim.archive.evaluate_individual_novelty(genome=genome,
				genomes=genomes,n_items_map=n_items_map,only_fitness=True)
		if fitness > 1:
			fitness = math.log(fitness)
		else:
			fitness = 0
		genome.fitness = fitness
	# 如果找到了成功的求解器基因组,为其分配的适应度值等于之前所述的指示性适应度得分
	if solver_genome is not None:
		solver_genome.fitness = math.log(800000) # ~=13.59

个体适应度评价函数

此函数是种群适应性评估的重要组成部分,可以从前面讨论的eval_genomes函数中调用该功能,以评估种群中每个基因组的迷宫解决性能。
通过迷宫导航模拟对单个基因组作为迷宫导航器的评估如下:

def eval_individual(genome_id, genome, genomes, n_items_map, config):
    # 创建NoveltyItem对象,以保存有关与特定基因组相关的新颖性评分的信息,
    # 并将其保存在n_items_map字典的全基因组ID下
    n_item = archive.NoveltyItem(generation=trial_sim.population.generation,
                                genomeId=genome_id)
    n_items_map[genome_id] = n_item
    # 创建原始迷宫环境的副本,以避免在仿真过程中产生副作用,然后从提供的基因组创建ANN
    maze_env = copy.deepcopy(trial_sim.orig_maze_environment)
    control_net = neat.nn.FeedForwardNetwork.create(genome, config)
    # 使用迷宫环境和ANN的副本,针对给定数量的模拟步骤执行迷宫求解模拟
    goal_fitness = maze.maze_simulation_evaluate(
                                        env=maze_env, 
                                        net=control_net, 
                                        time_steps=SOLVER_TIME_STEPS,
                                        n_item=n_item,
                                        mcns=MCNS)
    if goal_fitness == -1:
        # The individual doesn't meet the minimal fitness criterion
        print("Individ with ID: %d marked for extiction, MCNS: %f" 
                % (genome_id, MCNS))
        return False
    # 返回的基于目标的适应度评分以及其他基因组参数存储在AgentRecord中,然后将其添加到记录存储中
    record = agent.AgentRecord(
        generation=trial_sim.population.generation,
        agent_id=genome_id)
    record.fitness = goal_fitness
    record.x = maze_env.agent.location.x
    record.y = maze_env.agent.location.y
    record.hit_exit = maze_env.exit_found
    record.species_id = trial_sim.population.species.get_species_id(genome_id)
    record.species_age = record.generation - \
        trial_sim.population.species.get_species(genome_id).created
    # add record to the store
    trial_sim.record_store.add_record(record)
    # 如果给定的基因组不是最终结果,估计其新奇分数,
    # 用当前基因组的NoveltyItem更新NoveltyArchive中高适应度值的基因组列表:
    if not maze_env.exit_found:
        # evaluate genome novelty and add it to the archive if appropriate
        record.novelty = trial_sim.archive.evaluate_individual_novelty(
genome=genome, genomes=genomes,n_items_map=n_items_map)
    # update fittest organisms list
    trial_sim.archive.update_fittest_with_genome(genome=genome, 
                                        n_items_map=n_items_map)
    return maze_env.exit_found

实验中,基因组的适应度评分定义为两个单独的值,每个值具有不同的用途。面向目标的适应性评分有助于测试是否已找到解,并收集统计信息。基于新颖性的适应度评分指导神经进化过程。

迷宫导航模拟

迷宫环境与迷宫求解器智能体介绍

该部分详细介绍参考链接

超参数选择

实验中使用的目标函数基于没有明确上限值的新颖性度量。因此,不能精确地估计适应度阈值,为了表明找到了胜出的解决方案,使用一个指示值。
选择800000作为指示性新颖性得分。但是,为了在绘制实验结果时保持适应度得分的直观呈现,使用自然对数缩小了求解器的新颖性得分。因此,配置文件中使用的适应性阈值变为13.5,这比最大可能适应度分数(13.59)小一点,以避免出现舍入浮点数的问题:

[NEAT]
fitness_criterion = max
fitness_threshold = 13.5
pop_size = 500
reset_on_extinction = False

物种在进化停滞时的的生存时间更长:

[DefaultStagnation]
max_stagnation = 100

实验运行函数

  1. 加载NEAT算法配置并创建初始的基因组种群:
    config = neat.Config(
    	neat.DefaultGenome,neat.DefaultReproduction,
    	neat.DefaultSpeciesSet,neat.DefaultStagnation,
    	config_file)
    p = neat.Population(config)
    
  2. 为了在每次评估之后保留中间结果,使用MazeSimulationTrial对象初始化trial_sim全局变量。
    使用一个全局变量,可以通过传递给NEAT-Python框架的适应度评估回调函数(eval_genomes(genomes,config))进行访问:
    global trial_sim
    trial_sim = MazeSimulationTrial(maze_env=maze_env,population=p,archive=novelty_archive)
    
  3. 同样,向Population对象注册数个报告者,以输出算法结果并收集统计信息:
    p.add_reporter(neat.StdOutReporter(True))
    stats = neat.StatisticsReporter()
    p.add_reporter(stats)
    
  4. 在指定的世代中运行NEAT算法并评估结果:
    start_time = time.time()
    best_genome = p.run(eval_genomes,n=n_generations)
    elapsed_time = time.time() - start_time
    # Display the best genome among generations.
    print('\nBest genome: \n%s' % (best_genome))
    solution_found = (best_genome.fitness >= config.fitness_threshold)
    if solution_found:
        print("SUCCESS: The stable maze solver controller was found!!!")
    else:
        print("FAILURE: Failed to find the stable maze solver controller!!!")
    
  5. 之后,可以将收集到的统计数据和新颖性档案记录可视化并保存到文件系统中:
    node_names = {
        -1:'RF_R',-2:'RF_RF',-3:'RF_F',-4:'RF_FL',
        -5:'RF_L',-6:'RF_B',-7:'RAD_F',-8:'RAD_L',
        -9:'RAD_B',-10:'RAD_R',0:'ANG_VEL',1:'VEL'
    }
    visualize.draw_net(
        config,best_genome,view=show_results,
        node_names=node_names,directory=trial_out_dir,
        fmt='svg')
    if args is None:
        visualize.draw_maze_records(
            maze_env,trial_sim.record_store.records,
            view=show_results)
    else:
        visualize.draw_maze_records(
            maze_env,trial_sim.record_store.records,
            view=show_results,width=args.width,
            height=args.height,
            filename=os.path.join(trial_out_dir,'maze_records.svg'))
    visualize.plot_stats(
        stats,ylog=False,
        filename=os.path.join(trial_out_dir,'avg_fitness.svg'))
    visualize.plot_species(
        stats,view=show_results,
        filename=os.path.join(trial_out_dir,'speciation.svg'))
    # store NoveltyItems archive data
    trial_sim.archive.write_fittest_to_file(
        path=os.path.join(trial_out_dir,'ns_items_fittest.txt'))
    trial_sim.archive.write_to_file(
        path=os.path.join(trial_out_dir,'ns_items_all.txt')
    )
    
  6. 最后,执行其他可视化例程,以可视化迷宫求解器智能体通过迷宫的路径。
    为此,对进化过程中发现的最佳智能体的决策器ANN进行了迷宫导航仿真。在此模拟运行期间,将收集智能体访问的所有路径点,以供通过draw_agent_path函数进行渲染:
    maze_env = copy.deepcopy(trial_sim.orig_maze_environment)
    control_net = neat.nn.FeedForwardNetwork.create(best_genome,config)
    path_points = []
    evaluate_fitness = maze.maze_simulation_evaluate(
        env=maze_env,net=control_net,
        time_steps=SOLVER_TIME_STEPS,
        path_points=path_points)
    print("Evaluated fitness of best agent: %f" % evaluate_fitness)
    visualize.draw_agent_path(
        trial_sim.orig_maze_environment,
        path_points,best_genome,
        view=show_results,width=args.width,
        height=args.height,
        filename=os.path.join(trial_out_dir,'best_solver_path.svg'))
    

运行实验

在终端中执行以下命令:

$ python3 maze_experiment.py -g 500 -t 10 -m medium --width 300 --height 150

显示获胜者基因组的配置和有关试验的一般统计数据:

Best genome: 
Key: 36170
Fitness: 13.592367006650065
Nodes:
        0 DefaultNodeGene(key=0, bias=0.9583749969785536, response=1.0, activation=sigmoid, aggregation=sum)
        1 DefaultNodeGene(key=1, bias=-1.3352111211865185, response=1.0, activation=sigmoid, aggregation=sum)
Connections:
        DefaultConnectionGene(key=(-10, 0), weight=2.012697148953962, enabled=True)
        DefaultConnectionGene(key=(-10, 1), weight=2.3586743900645715, enabled=True)
        DefaultConnectionGene(key=(-9, 0), weight=0.5133819837545476, enabled=False)
        DefaultConnectionGene(key=(-9, 1), weight=-1.3453064468779043, enabled=True)
        DefaultConnectionGene(key=(-8, 0), weight=-1.3151248904230235, enabled=True)
        DefaultConnectionGene(key=(-6, 1), weight=-1.50551995321142, enabled=True)
        DefaultConnectionGene(key=(-5, 0), weight=-3.020445866909174, enabled=False)
        DefaultConnectionGene(key=(-5, 1), weight=-2.090540743662507, enabled=True)
        DefaultConnectionGene(key=(-4, 0), weight=-1.8754146567384993, enabled=True)
        DefaultConnectionGene(key=(-4, 1), weight=2.0773106904549614, enabled=True)
        DefaultConnectionGene(key=(-3, 0), weight=2.6406887829938044, enabled=True)
        DefaultConnectionGene(key=(-3, 1), weight=0.4049529471735065, enabled=True)
        DefaultConnectionGene(key=(-2, 1), weight=0.5571713919237005, enabled=True)
        DefaultConnectionGene(key=(-1, 0), weight=1.5212036155782374, enabled=True)
        DefaultConnectionGene(key=(-1, 1), weight=0.7204766260373855, enabled=True)
        DefaultConnectionGene(key=(0, 0), weight=1.1105019563826226, enabled=True)
SUCCESS: The stable maze solver controller was found!!!

控制器ANN的最终配置如下所示:
ANN配置进化过程适应度得分曲线图:适应度曲线图

进化过程中物种图:
物种形成图

智能体记录可视化

智能体记录的可视化:

$ python3 visualize.py -m medium -r out/maze_ns/medium/0/data.pickle --width 300 --height 150

智能体记录可视化

查看成功的智能体的路径,该智能体能够找到迷宫出口:

智能体路径

完整代码

  • geometry.py、medium_maze.txt、utils.py
    代码链接
  • agent.py
import pickle

class Agent:
    """
    This is maze navigating agent.
    """
    def __init__(
        self,location,heading=0,speed=0,angular_vel=0,radius=8.0,
        range_finder_range=100.0):
        """
        Creates new Agent with spcified parameters.
        Arguments:
            location: The agent initial position within maze.
            heading: The heading direction in degrees.
            speed: The linear velocity of the agent.
            angular_vel: The angular velocity of the agent.
            radius: The agent's body radius.
            range_finder_range: The maximal detection range for radar sensor.
        """
        self.heading = heading
        self.speed = speed
        self.angular_vel = angular_vel
        self.radius = radius
        self.range_finder_range = range_finder_range
        self.location = location

        # defining the range finder sensors
        self.range_finder_angles = [-90.0, -45.0, 0.0, 45.0, 90.0, -180.0]

        # defining the range radar sensors
        self.radar_angles = [(315.0, 405.0), (45.0, 135.0), (135.0, 225.0), (225.0, 315.0)]

        # the list to hold range finders activations
        self.range_finders = [None] * len(self.range_finder_angles)

        # the list to hold pie-slice radar activations
        self.radar = [None] * len(self.radar_angles)

class AgentRecord:
    """
    The class to hold results of maze navigation simulation for specific
    solver agent. It provides all statistics about the agent at the end
    of navigation run.
    """
    def __init__(self,generation,agent_id):
        """
        Creates new record for specific agent at the specific generation
        of the evolutionary process.
        """
        self.generation = generation
        self.agent_id = agent_id
        # initialize agent's properties
        self.x = -1
        self.y = -1
        self.fitness = -1
        self.novelty = -1
        # The flag to indicate whether this agent was able to find maze exit
        self.hit_exit = False
        # The ID of species this agent belong to
        self.species_id = -1
        # The age of agent's species at the time of recording
        self.species_age = -1

class AgentRecordStore:
    """
    The class to control agents record store.
    """
    def __init__(self):
        """
        Creates new instance.
        """
        self.records = []
    
    def add_record(self,record):
        """
        The function to add specified record to this store.
        Arguments:
            record: The record to be added.
        """
        self.records.append(record)
    
    def load(self, file):
        """
        The function to load records list from the specied file into this class.
        Arguments:
            file: The path to the file to read agents records from.
        """
        with open(file, 'rb') as dump_file:
            self.records = pickle.load(dump_file)
    
    def dump(self, file):
        """
        The function to dump records list to the specified file from this class.
        Arguments:
            file: The path to the file to hold data dump.
        """
        with open(file, 'wb') as dump_file:
            pickle.dump(self.records, dump_file)
  • maze_config.ini
[NEAT]
fitness_criterion = max
fitness_threshold = 13.5
pop_size = 500
reset_on_extinction = True

[DefaultGenome]
# node activataion options
activation_default = sigmoid
activation_mutate_rate = 0.0
activation_options = sigmoid

# node aggregation options
aggregation_default = sum
aggregation_mutate_rate = 0.0
aggregation_options = sum

# node bias options
bias_init_mean = 0.0
bias_init_stdev = 1.0
bias_max_value = 30.0
bias_min_value = -30.0
bias_mutate_power = 0.5
bias_mutate_rate = 0.7
bias_replace_rate = 0.1

# genome compatibility options
compatibility_disjoint_coefficient = 1.1
compatibility_weight_coefficient = 0.5

# connection add/reomve rates
conn_add_prob = 0.5
conn_delete_prob = 0.1

# connection enable options
enabled_default = True
enabled_mutate_rate = 0.01

feed_forward = False
initial_connection = partial_direct 0.5

# node add/reomve rates
node_add_prob = 0.1
node_delete_prob = 0.1

# network parameters
num_hidden = 1
num_inputs = 10
num_outputs = 2

# node responde options
response_init_mean = 1.0
response_init_stdev = 0.0
response_max_value = 30.0
response_min_value = -30.0
response_mutate_power = 0.0
response_mutate_rate = 0.0
response_replace_rate = 0.0

# connection weight options
weight_init_mean = 0.0
weight_init_stdev = 1.0
weight_max_value = 30.0
weight_min_value = -30.0
weight_mutate_power = 0.5
weight_mutate_rate = 0.8
weight_replace_rate = 0.1

[DefaultSpeciesSet]
compatibility_threshold = 3.0

[DefaultStagnation]
species_fitness_func = max
max_stagnation = 100
species_elitism = 1

[DefaultReproduction]
elitism = 2
survival_threshold = 0.1
min_species_size = 2
  • maze_environment.py
import math

import agent
import geometry

from novelty_archive import NoveltyItem

# The maximal allowed speed for the maze solver agent
MAX_AGENT_SPEED = 3.0

def maze_novelty_metric(first_item, second_item):
    """
    The function to calculate the novelty metric score as a distance
    between two data vectors in provided NoveltyItems
    Arguments:
        first_item: The first NoveltyItem
        second_item: The second NoveltyItem
    Returns:
        The novelty metric as a distance between two data vectors
        in provided noveltyItems
    """
    if not (hasattr(first_item, 'data') or hasattr(second_item, 'data')):
        return NotImplemented
    
    if len(first_item.data) != len(second_item.data):
        # can not be compared
        return 0.0
    
    diff_accum = 0.0
    size = len(first_item.data)
    for i in range(size):
        diff = abs(first_item.data[i] - second_item.data[i])
        diff_accum += diff
    
    return diff_accum / float(size)

def maze_novelty_metric_euclidean(first_item, second_item):
    """
    The function to calculate the novelty metric score as a distance
    between two data vectors in provided NoveltyItems.
    Arguments:
        first_item: The first NoveltyItem
        second_item: The second NoveltyItem
    Returns:
        The novelty metric as a distance between two data vectors
        in provided noveltyItems
    """
    if not (hasattr(first_item, 'data') or hasattr(second_item, 'data')):
        return NotImplemented
    
    if len(first_item.data) != len(second_item.data):
        # can't be compared
        return 0.0
    
    diff_accum = 0.0
    size = len(first_item.data)
    for i in range(size):
        diff = (first_item.data[i] - second_item.data[i])
        diff_accum += (diff * diff)
    
    return math.sqrt(diff_accum)

class MazeEnvironment:
    """
    This class encapsulates the maze simulation environment.
    """
    def __init__(self, agent, walls, exit_point, exit_range=5.0):
        """
        Creates new maze environment with specified walls and exit point.
        Arguments:
            agent: The maze novigating agent
            walls: The maze walls
            exit_point: The maze exit point
            exit_range: The range arround exit point marking exit area
        """
        self.walls = walls
        self.exit_point = exit_point
        self.exit_range = exit_range
        # The maze navigating agent
        self.agent = agent
        # The flag to indicate if exit was found
        self.exit_found = False
        # The initial distance of agent from exit
        self.initial_distance = self.agent_distance_to_exit()

        # The sample rate of agent position points saving during simulation steps.
        self.location_sample_rate = -1

        # Update sensors
        self.update_rangefinder_sensors()
        self.update_radars()

    def agent_distance_to_exit(self):
        """
        The function to estimate distance from maze solver agent to the maze exit.
        Returns:
            The distance from maze solver agent to the maze exit
        """
        return self.agent.location.distance(self.exit_point)
    
    def test_wall_collision(self,loc):
        """
        The function to test if agent at specified location collides with any of
        the maze walls
        Argument:
            loc: The new agent location to test for collision.
        Returns:
            The True if agent at new location will collide with any of the maze walls.
        """
        for w in self.walls:
            if w.distance(loc) < self.agent.radius:
                return True
        
        return False

    def create_net_inputs(self):
        """
        The function to create the ANN input values from the simulaiton environment.
        Returns:
            The list of ANN inputs consist of values get from solver agent sensors.
        """
        inputs = []
        # The range finders
        for ri in self.agent.range_finders:
            inputs.append(ri)
        
        # The radar sensors:
        for rs in self.agent.radar:
            inputs.append(rs)
        
        return inputs

    def apply_control_signals(self, control_signals):
        """
        The function to apply control signals received from control ANN to the
        maze solver agent.
        Arguments:
            control_signals: The control received from the control ANN.
        """
        self.agent.angular_vel += (control_signals[0] - 0.5)
        self.agent.speed += (control_signals[1] - 0.5)

        # constrain the speed & angular velocity
        if self.agent.speed > MAX_AGENT_SPEED:
            self.agent.speed = MAX_AGENT_SPEED
        
        if self.agent.speed < -MAX_AGENT_SPEED:
            self.agent.speed = -MAX_AGENT_SPEED
        
        if self.agent.angular_vel > MAX_AGENT_SPEED:
            self.agent.angular_vel = MAX_AGENT_SPEED
        
        if self.agent.angular_vel < -MAX_AGENT_SPEED:
            self.agent.angular_vel = -MAX_AGENT_SPEED
    
    def update_rangefinder_sensors(self):
        """
        The function to update the agent range finder sensors.
        """
        for i, angle in enumerate(self.agent.range_finder_angles):
            rad = geometry.deg_to_rad(angle)
            # project a point from agent location outwards
            projection_point = geometry.Point(
                x = self.agent.location.x + math.cos(rad) * self.agent.range_finder_range,
                y = self.agent.location.y + math.sin(rad) * self.agent.range_finder_range
            )
            # rotate the projection point by the agent's heading angle to
            # algin it with heading direction.
            projection_point.rotate(self.agent.heading, self.agent.location)
            # create the line segment from the agent location to the projected point
            projection_line = geometry.Line(
                a = self.agent.location,
                b = projection_point
            )
            # set range to maximum detection range
            min_range = self.agent.range_finder_range

            # now test against maze walls to see if projection line hits any wall
            # and find the closest hit
            for wall in self.walls:
                found, intersection = wall.intersection(projection_line)
                if found:
                    found_range = intersection.distance(self.agent.location)
                    # we are interested in the closest hit
                    if found_range < min_range:
                        min_range = found_range
                
            # Update sendor value
            self.agent.range_finders[i] = min_range
    
    def update_radars(self):
        """
        The function to update the agent radar sensors.
        """
        target = geometry.Point(self.exit_point.x, self.exit_point.y)
        # rotate target with respect to the agent's heading to align it 
        # with haeading diretion
        target.rotate(self.agent.heading, self.agent.location)
        # translate with respect to the agent's location
        target.x -= self.agent.location.x
        target.y -= self.agent.location.y
        # the angle between maze eixt point and the agent's heading direction
        angle = target.angle()
        # find the appropriate radar sensor to be fired
        for i, r_angles in enumerate(self.agent.radar_angles):
            self.agent.radar[i] = 0.0 # reset specific radar

            if (angle >= r_angles[0] and angle < r_angles[1]) or (angle + 360 >= r_angles[0] and angle + 360 < r_angles[1]):
                self.agent.radar[i] = 1.0 # fire teh radar

    def update(self,control_signals):
        """
        The function to update the solver agent position within maze. 
        After agent position updated it will be checked to find out if maze exit was
        reached after that.
        Arguments:
            control_signals: The control signals received from control ANN
        Returns:
            The True if maze exit was found after update or maze exit was already
            found in previous simulation cycles.
        """
        if self.exit_found:
            return True
        
        # Apply control signals
        self.apply_control_signals(control_signals)

        # get X and Y velocity conponents
        vx = math.cos(geometry.deg_to_rad(self.agent.heading)) * self.agent.speed
        vy = math.sin(geometry.deg_to_rad(self.agent.heading)) * self.agent.speed

        # Update current Agent's heading (we consider the simulation time 
        # step size equal to 1s and the angular velocity as degrees
        # per second)
        self.agent.heading += self.agent.angular_vel

        # Enforce angular velocity bounds by wrapping
        if self.agent.heading > 360:
            self.agent.heading -= 360
        elif self.agent.heading < 0:
            self.agent.heading += 360
        
        # find the next loaction of the agent
        new_loc = geometry.Point(
            x = self.agent.location.x + vx,
            y = self.agent.location.y + vy
        )

        if not self.test_wall_collision(new_loc):
            self.agent.location = new_loc
        
        # update agent's sensors
        self.update_rangefinder_sensors()
        self.update_radars()

        # check if agent reached exit point
        distance = self.agent_distance_to_exit()
        self.exit_found = (distance < self.exit_range)
        return self.exit_found
    
    def __str__(self):
        """
        Returns the nicely formatted string representation of this environment.
        """
        str = "MAZE\nAgent at: (%.1f, %.1f)" % (self.agent.location.x, self.agent.location.y)
        str += "\nExit  at: (%.1f, %.1f), exit range: %.1f" % (self.exit_point.x, self.exit_point.y, self.exit_range)
        str += "\nWalls [%d]" % len(self.walls)
        for w in self.walls:
            str += "\n\t%s" % w
        
        return str
    
def read_environment(file_path):
    """
    The function to read maze environment configuration from provided file.
    Argument:
        file_path: The path to the file read maze configuration from.
    Returns:
        The initialized maze environment.
    """
    num_lines, index = -1, 0
    walls = []
    maze_agent, maze_exit = None, None
    with open(file_path, 'r') as f:
        for line in f.readlines():
            line = line.strip()
            if len(line) == 0:
                # skip empty lines
                continue

            if index == 0:
                # read the number of lines segments
                num_lines = int(line)
            elif index == 1:
                # read the agent's position
                loc = geometry.read_point(line)
                maze_agent = agent.Agent(location=loc)
            elif index == 2:
                # read the agent's initial heading
                maze_agent.heading = float(line)
            elif index == 3:
                # read the maze exit location
                maze_exit = geometry.read_point(line)
            else:
                # read the walls
                wall = geometry.read_line(line)
                walls.append(wall)
            
            # increment cursor
            index += 1
            
    assert len(walls) == num_lines

    print("Maze environment configured successfully from the file: %s" % file_path)
    # create and return the maze environment
    return MazeEnvironment(agent=maze_agent, walls=walls, exit_point=maze_exit)

def maze_simulation_evaluate(
    env, net, time_steps,
    mcns=0.0, n_item=None,
    path_points=None):
    """
    The function to evaluate maze simulation for specific environment
    and controller ANN provided. The results will be saved into provided
    agent record holder.
    Arguments:
        env: The maze configuration environment.
        net: The maze solver agent's controll ANN.
        time_steps: The number of time steps for maze simulation.
        mcns: The minimal criteria fitness value.
        n_item: The NovelryItem to store evaluation results.
        path_points: The holder for path points collected during simulation.
            If provided None the nothing will be collected.
    Returns:
        The goal-oriented fitness value, i.e., how close is agent to the exit
        at the end of simulation.
    """
    exit_found = False
    for i in range(time_steps):
        if maze_simulation_step(env, net):
            print("Maze solved in %d steps" % (i + 1))
            exit_found = True
            break

        if path_points is not None:
            # collect current position
            path_points.append(geometry.Point(env.agent.location.x, env.agent.location.y))

        # store agent path points at a given sample size rate
        if (time_steps - i) % env.location_sample_rate == 0 and n_item is not None:
            n_item.data.append(env.agent.location.x)
            n_item.data.append(env.agent.location.y)
   
    # store final agent coordinates as genome's novelty characteristics
    if n_item is not None:
        n_item.data.append(env.agent.location.x)
        n_item.data.append(env.agent.location.y)
    
    # Calculate the fitness score based on distance from exit
    fitness = 0.0
    if exit_found:
        fitness = 1.0
    else:
        # Noralize distance to range (0,1]
        distance = env.agent_distance_to_exit()
        fitness = (env.initial_distance - distance) / env.initial_distance
        if fitness <= 0:
            fitness = 0.01
    
    # Use minimal criteria fitness value to signal if genome
    # should be included into population
    if fitness < mcns:
        fitness = -1 # mark genome to be excluded
    
    if n_item is not None:
        n_item.fitness = fitness
    
    return fitness
   
def maze_simulation_step(env, net):
    """
    The function to perform one step of maze simulation.
    Arguments:
        env: The maze configuration environment.
        net: The maze solver agent's control ANN.
    Returns:
        The True if maze agent solved the maze.
    """
    # create inputs from the current state of the environment
    inputs = env.create_net_inputs()
    # load inputs into controll ANN and get results
    output = net.activate(inputs)
    # apply control signal to the environment and update
    return env.update(output)
  • maze_experiment.py
import os
import shutil
import math
import random
import time
import copy
import argparse

import neat
import visualize
import utils

import maze_environment as maze
import agent
import novelty_archive as archive

# The number of maze solving simulator steps
SOLVER_TIME_STEPS = 400
# The minimal goal fitness criterion
MCNS = 0.01

class MazeSimulationTrial:
    """
    The class to hold maze simulator execution parameters and results
    """
    def __init__(self,maze_env,population,archive):
        """
        Creates new instance and initialize fileds.
        Arguments:
            maze_env:   The maze environment as loaded from configuration file.
            population: The population for this trial run
            archive:    The archive to hold NoveltyItems
        """
        # The initial maze simulation environment
        self.orig_maze_environment = maze_env
        # The record store for envaluated maze solver agents
        self.record_store = agent.AgentRecordStore()
        # The NEAT population object
        self.population = population
        # The NoveltyItem archive
        self.archive = archive

# The simulation results holder for a one trial.
# It must be initialized before start of each trial.
trial_sim = None

def eval_individual(genome_id, genome, genomes, n_items_map, config):
    """
    Evaluates the individual represented by genome.
    Arguments:
        genome_id:      The ID of genome.
        genome:         The genome to evaluate.
        genomes:        The genomes population for current generation.
        n_items_map:    The map to hold novelty items for current generation.
        config:         The NEAT configuration holder.
    Return:
        The True if successful solver found.
    """
    # create NoveltyItem for genome and store it into map
    n_item = archive.NoveltyItem(generation=trial_sim.population.generation,genomeId=genome_id)
    n_items_map[genome_id] = n_item
    # run the simulation
    maze_env = copy.deepcopy(trial_sim.orig_maze_environment)
    control_net = neat.nn.FeedForwardNetwork.create(genome, config)
    goal_fitness = maze.maze_simulation_evaluate(
        env=maze_env,net=control_net,
        time_steps=SOLVER_TIME_STEPS,
        n_item=n_item,mcns=MCNS
    )

    if goal_fitness == -1:
        # The individual doesn't meet the minimal fitness criterion
        print("Individ with ID: %d marked for extiction, MCNS: %f" % (genome_id, MCNS))
        return False
    
    # store simulation results into the agent record
    record = agent.AgentRecord(
        generation=trial_sim.population.generation,
        agent_id=genome_id)
    record.fitness = goal_fitness
    record.x = maze_env.agent.location.x
    record.y = maze_env.agent.location.y
    record.hit_exit = maze_env.exit_found
    record.species_id = trial_sim.population.species.get_species_id(genome_id)
    record.species_age = record.generation - trial_sim.population.species.get_species(genome_id).created
    # add record to the store
    trial_sim.record_store.add_record(record)

    # Evaluate the novelty of a genome and add the novelty item to the 
    # archive of Novelty items if appropriate
    if not maze_env.exit_found:
        # enaluate genome novelty and add it to the archive if appropriate
        record.novelty = trial_sim.archive.evaluate_individual_novelty(
            genome=genome,genomes=genomes,n_items_map=n_items_map)
        
    # update fittest organisms list
    trial_sim.archive.update_fittest_with_genome(
        genome=genome,n_items_map=n_items_map)
    
    return maze_env.exit_found

def eval_genomes(genomes,config):
    """
    The function to evaluate the fitness of each genome in 
    the genomes list.
    Arguments:
        genomes: The list of genomes from population in the 
                 current generation
        config:  The configuration settings with algorithm
                 hyper-parameters
    """
    # The map to hold the novelty items for current generation
    n_items_map = {}
    solver_genome = None
    for genome_id, genome in genomes:
        found = eval_individual(
            genome_id=genome_id,
            genome=genome,
            genomes=genomes,
            n_items_map=n_items_map,
            config=config)
        if found:
            solver_genome = genome

    # now adjust the arcive settings and evaluate population
    trial_sim.archive.end_of_generation()
    for genome_id, genome in genomes:
        # set fitness value as a logarithm of a novelty score of a
        # genome in the population
        fitness = trial_sim.archive.evaluate_individual_novelty(
            genome=genome,genomes=genomes,n_items_map=n_items_map,only_fitness=True
        )
        # To avoid negative genome fitness scores we just set to zero all obtained
        # fitness scores that is less than 1 (note we use the natural logarithm)
        if fitness > 1:
            fitness = math.log(fitness)
        else:
            fitness = 0
        # assign the adjusted fitness score to the genome
        genome.fitness = fitness
    
    # if successful maze solver was found then adjust its fitness 
    # to signal the finish evolution
    if solver_genome is not None:
        solver_genome.fitness = math.log(800000) # ~=13.59

def run_experiment(
    config_file,maze_env,novelty_archive,trial_out_dir,
    args=None,n_generations=100,save_results=False,silent=False):
    """
    The function to run the experiment against hyper-parameters 
    defined in the provided configuration file.
    The winner genome will be rendered as a graph as well as the
    important statistics of neuroevolution process execution.
    Arguments:
        config_file:        The path to the file with experiment configuration
        maze_env:           The maze environment to use in simulation.
        novelty_archive:    The archive to work with NoveltyItems.
        trial_out_dir:      The directory to store outputs for this trial
        n_generations:      The number of generations to execute.
        save_results:       The flag to control if intermdiate results will be saved.
        silent:             If True than no intermediary outputs will be
                            presented until solution is found.
        args:               The command line arguments holder.
    Returns:
        True if experiment finished with successful solver found. 
    """
    # set random seed
    # seed = int(time.time())
    # random.seed(seed)
    # print("Selected random seed:", seed)

    # Load configuration.
    config = neat.Config(
        neat.DefaultGenome,neat.DefaultReproduction,
        neat.DefaultSpeciesSet,neat.DefaultStagnation,
        config_file)
    
    # Create the population, which is the top-level object for a NEAT run.
    p = neat.Population(config)

    # Create the trial simulation
    global trial_sim
    trial_sim = MazeSimulationTrial(maze_env=maze_env,
        population=p,archive=novelty_archive)

    # Add a stdout reporter to show progress in the terminal.
    p.add_reporter(neat.StdOutReporter(True))
    stats = neat.StatisticsReporter()
    p.add_reporter(stats)

    # Run for up to N generations.
    start_time = time.time()
    best_genome = p.run(eval_genomes, n=n_generations)

    elapsed_time = time.time() - start_time

    # Display the best genome among generations.
    print('\nBest genome: \n%s' % (best_genome))

    solution_found = (best_genome.fitness >= config.fitness_threshold)
    if solution_found:
        print("SUCCESS: The stable maze solver controller was found!!!")
    else:
        print("FAILURE: Failed to find the stable maze solver controller!!!")

    # write the record store data
    rs_file = os.path.join(trial_out_dir,'data.pickle')
    trial_sim.record_store.dump(rs_file)

    print("Record store file: %s" % rs_file)
    # print("Random seed:", seed)
    print("Trial elapsed time: %.3f sec" % (elapsed_time))

    # visualize the experiment results
    show_results = solution_found or not silent
    if save_results or show_results:
        node_names = {
            -1:'RF_R',-2:'RF_FR',-3:'RF_F',-4:'RF_FL',
            -5:'RF_L',-6:'RF_B',-7:'RAD_F',-8:'RAD_L',
            -9:'RAD_B',-10:'RAD_R',0:'ANG_VEL',1:'VEL'
        }
        visualize.draw_net(
            config,best_genome,view=show_results,
            node_names=node_names,directory=trial_out_dir,
            fmt='svg')
        if args is None:
            visualize.draw_maze_records(
                maze_env,trial_sim.record_store.records,
                view=show_results)
        else:
            visualize.draw_maze_records(
                maze_env,trial_sim.record_store.records,
                view=show_results,width=args.width,
                height=args.height,
                filename=os.path.join(trial_out_dir,'maze_records.svg'))
        visualize.plot_stats(
            stats,ylog=False,view=show_results,
            filename=os.path.join(trial_out_dir,'avg_fitness.svg'))
        visualize.plot_species(
            stats,view=show_results,
            filename=os.path.join(trial_out_dir,'speciation.svg'))

        # store NoveltyItems archive data
        trial_sim.archive.write_fittest_to_file(path=os.path.join(trial_out_dir, 'ns_items_fittest.txt'))
        trial_sim.archive.write_to_file(path=os.path.join(trial_out_dir, 'ns_items_all.txt'))            
        # store NoveltyItems archive data
        trial_sim.archive.write_fittest_to_file(
            path=os.path.join(trial_out_dir,'ns_items_fittest.txt'))
        trial_sim.archive.write_to_file(
            path=os.path.join(trial_out_dir,'ns_items_all.txt')
        )

        # create the best genome simulation path and redar
        maze_env = copy.deepcopy(trial_sim.orig_maze_environment)
        control_net = neat.nn.FeedForwardNetwork.create(best_genome, config)
        path_points = []
        evaluate_fitness = maze.maze_simulation_evaluate(
            env=maze_env,net=control_net,
            time_steps=SOLVER_TIME_STEPS,
            path_points=path_points)
        print("Evaluated fitness of best agent: %f" % evaluate_fitness)
        visualize.draw_agent_path(
            trial_sim.orig_maze_environment,
            path_points,best_genome,
            view=show_results,width=args.width,
            height=args.height,
            filename=os.path.join(trial_out_dir,'best_solver_path.svg'))
    
    return solution_found

if __name__ == '__main__':
    # read command line parameters
    parser = argparse.ArgumentParser(description="The maze experiment runner (Novelty Search).")
    parser.add_argument('-m', '--maze', default='medium', 
                        help='The maze configuration to use.')
    parser.add_argument('-g', '--generations', default=500, type=int, 
                        help='The number of generations for the evolutionary process.')
    parser.add_argument('-t', '--trials', type=int, default=1, help='The number of trials to run')
    parser.add_argument('-n', '--ns_threshold', type=float, default=6.0,
                        help="The novelty threshold value for the archive of NoveltyItems.")
    parser.add_argument('-r', '--location_sample_rate', type=int, default=4000,
                        help="The sample rate of agent position points saving during simulation steps.")
    parser.add_argument('--width', type=int, default=400, help='The width of the records subplot')
    parser.add_argument('--height', type=int, default=400, help='The height of the records subplot')
    args = parser.parse_args()

    if not (args.maze == 'medium' or args.maze == 'hard'):
        print('Unsupported maze configuration: %s' % args.maze)
        exit(1)
    
    # The current working directory
    local_dir = os.path.dirname(__file__)
    # The directory to store outputs
    out_dir = os.path.join(local_dir, 'out')
    out_dir = os.path.join(out_dir, 'maze_ns')

    # Determine path to configuration file.
    config_path = os.path.join(local_dir, 'maze_config.ini')

    # Clean results of previous run if any or init the output directory
    out_dir = os.path.join(out_dir, args.maze)
    utils.clear_output(out_dir)

    # Read the maze environment configuration
    maze_env_config = os.path.join(local_dir, '%s_maze.txt' % args.maze)
    maze_env = maze.read_environment(maze_env_config)
    maze_env.location_sample_rate = args.location_sample_rate

    # Run the maze experiment trials
    print("Starting the %s maze experiment (Novelty Search), for %d trials" % (args.maze, args.trials))
    for t in range(args.trials):
        print("\n\n----- Starting Trial: %d ------" % (t))
        #create novelty archive
        novelty_archive = archive.NoveltyArchive(
            threshold=args.ns_threshold,metric=maze.maze_novelty_metric)
        trial_out_dir = os.path.join(out_dir, str(t))
        os.makedirs(trial_out_dir, exist_ok=True)
        solution_found = run_experiment(
            config_file = config_path, maze_env = maze_env,
            novelty_archive = novelty_archive, trial_out_dir = trial_out_dir,
            n_generations = args.generations, args=args,save_results=True,
            silent=True)
        print("\n----- Trial %d complete, solution found: %s -------\n" % (t,solution_found))
  • novelty_archive.py
from functools import total_ordering

# how many nearst neighbors to consider for calculating novelty score
KNNNoveltyScore = 15
# The maximal allowed size for fittest items list
FittestAllowedSize = 5
# The minimal number of items to include in the archive unconditionaly
ArchiveSeedAmount = 1

@total_ordering
class NoveltyItem:
    """
    The class to encapsulate information about particular item that
    holds information about novelty score associated with specific
    genome along with auxiliary information. It is used in combination
    with NoveltyArchive
    """
    def __init__(self,generation=-1,genomeId=-1,fitness=-1,novelty=-1):
        """
        generation: The evolution generation when this item was created
            genomeId:   The ID of genome associated with it
            fitness:    The goal-oriented fitness score of genome associated with this item
            novelty:    The novelty score of genome
        """
        self.generation = generation
        self.genomeId = genomeId
        self.fitness = fitness
        self.novelty = novelty
        # Indicates whether this item was already added to the archive
        self.in_archive = False
        # The list holding data points associated with this item that will be used
        # to calculate distance between this item and any other item. This distance
        # will be used to estimate the novelty score associated with the item.
        self.data = []
    
    def __str__(self):
        """
        The function to create string representation
        """
        return "%s: id: %d, at generation: %d, fitness: %f, novelty: %f\tdata: %s" % \
            (self.__class__.__name__, self.genomeId, self.generation, self.fitness, self.novelty, self.data)
        
    def _is_valid_operand(self,other):
        return (hasattr(other,'fitness') and hasattr(other,'novelty'))
    
    def __lt__(self,other):
        """Compare if this item is less than supplied other item by
        goal-oriented fitness value.
        """
        if not self._is_valid_operand(other):
            return NotImplemented
        
        if self.fitness < other.fitness:
            return True
        elif self.fitness == other.fitness:
            # less novel is less
            return self.novelty < other.novelty
        return False

@total_ordering
class ItemsDistance:
    """
    Holds information about distance between the two NoveltyItem objects based
    on the nearest neighbour metric.
    """
    def __init__(self,first_item,second_item,distance):
        """
        Creates new instance for two NoveltyItem objects
        Arguments:
            first_item:     The item from which distance is measured
            second_item:    The item to which distance is measured
            distance:       The distance value
        """
        self.first_item = first_item
        self.second_item = second_item
        self.distance = distance
    
    def _is_valid_operand(self,other):
        return hasattr(other,"distance")
    
    def __lt__(self,other):
        """
        Compare if the distance in this object is less that in other.
        """
        if not self._is_valid_operand(other):
            return NotImplemented
        
        return self.distance < other.distance

class NoveltyArchive:
    """
    The novelty archive contains all of the novel items we have encountered thus far.
    """
    def __init__(self, threshold, metric):
        """
        Creates new instance with specified novelty threshold and function
        defined novelty metric.
        Arguments:
            threshold:  The minimal novelty score of the item to be included into this archive.
            metric:     The function to calculate the novelty score of specific genome.
        """
        self.novelty_metric = metric
        self.novelty_threshold = threshold

        # the minimal possiable value of novelty threshold
        self.novelty_floor = 0.25
        # the novel items added during current generation
        self.items_added_in_generation = 0
        # the counter to keep track of how many generations passed 
        # since we've added to the archive
        self.time_out = 0
        # the parameter specifying how many neighbors to look at for the K-nearest 
        # neighbor distance estimation to be used in novelty score
        self.neighbors = KNNNoveltyScore
        # the current evolutionary generation
        self.generation = 0

        # list with all novel items found so far
        self.novel_items = []
        # list with all novel items found that is related to the fittest
        # genomes (using the goal-oriented fitness score)
        self.fittest_items = []

    def evaluate_individual_novelty(self, genome, genomes, n_items_map, only_fitness=False):
        """
        The function to evaluate the novelty score of a single genome within
        population and update its fitness if appropriate (only_fitness=True)
        Arguments:
            genome:         The genome to evaluate
            genomes:        The current population of genomes
            n_items_map:    The map of novelty items for the current population by genome ID
            only_fitness:   The flag to indicate if only fitness should be calculated and assigned to genome
                            using the novelty score. Otherwise novelty score will be used to accept
                            genome into novelty items archive.
        Returns:
            The calculated novelty score for individual genome.
        """
        if genome.key not in n_items_map:
            print("WARNING! Found Genome without novelty point associated: %s" +
                "\nNovelty evaluation will be skipped for it. Probably winner found!" % genome.key)
            return
        
        item = n_items_map[genome.key]
         # Check if individual was marked for extinction due to failure to meet minimal fitness criterion
        if item.fitness == -1.0:
            return -1.0

        result = 0.0
        if only_fitness:
            # assign genome fitness according to the average novelty within
            # archive and population
            result = self._novelty_avg_knn(item=item, genomes=genomes, n_items_map=n_items_map)
        else:
            # consider adding a NoveltyItem to the archive based on the 
            # distance to a closest neighbor
            result = self._novelty_avg_knn(item=item, neighbors=1, n_items_map=n_items_map)
            if result > self.novelty_threshold or len(self.novel_items) < ArchiveSeedAmount:
                self._add_novelty_item(item)
            
        # store found values to the novelty item
        item.novelty = result
        item.generation = self.generation

        return result
    
    def update_fittest_with_genome(self,genome,n_items_map):
        """
        The function to update list of NovelItems for the genomes with the higher
        fitness scores achieved so far during the evolution.
        Arguments:
            genome:         The genome to evaluate
            n_items_map:    The map of novelty items for the current population by genome ID
        """
        assert genome.key in n_items_map
        item = n_items_map[genome.key]

        if len(self.fittest_items) < FittestAllowedSize:
            # store novelty item into fittest
            self.fittest_items.append(item)
            # sort in descending order by fitness
            self.fittest_items.sort(reverse=True)
        else:
            last_item = self.fittest_items[-1]
            if item.fitness > last_item.fitness:
                # store novelty item into fittest
                self.fittest_items.append(item)
                # sort in descending order by fitness
                self.fittest_items.sort(reverse=True)
                # remove the less fit item
                del self.fittest_items[-1]
   
    def end_of_generation(self):
        """
        The function to update archive state at the end of the generation.
        """
        self.generation += 1
        self._adjust_archive_settings()
    
    def write_to_file(self,path):
        """
        The function to write all NoveltyItems stored in this archive.
        Arguments:
            path: The path to the file where to store NoveltyItems
        """
        with open(path, 'w') as f:
            for ni in self.novel_items:
                f.write("%s\n" % ni)
    
    def write_fittest_to_file(self,path):
        """
        The function to write the list of NoveltyItems of fittests genomes
        that was collected during the evolution.
        Arguments:
            path: The path to the file where to store NoveltyItems
        """
        with open(path, 'w') as f:
            for ni in self.fittest_items:
                f.write("%s\n" % ni)

    def _add_novelty_item(self,item):
        """
        The function to add specified NoveltyItem to this archive.
        Arguments:
            item: The NoveltyItem to be added.
        """
        # add item
        item.in_archive = True
        item.generation = self.generation
        self.novel_items.append(item)
        self.items_added_in_generation += 1
    
    def _adjust_archive_settings(self):
        """
        The function to adjust the dynamic novelty threshold depending 
        on how many have NoveltyItem objects have been added to the archive recently
        """
        if self.items_added_in_generation == 0:
            self.time_out += 1
        else:
            self.time_out = 0
        
        # if no items have been added for the last 10 generations lower the threshold
        if self.time_out >= 10:
            self.novelty_threshold *= 0.95
            if self.novelty_threshold < self.novelty_floor:
                self.novelty_threshold = self.novelty_floor
            self.time_out = 0
        
        # if more than four individuals added in last generation then raise threshold
        if self.items_added_in_generation >= 4:
            self.novelty_threshold *= 1.2
        
        # reset counters
        self.items_added_in_generation = 0
    
    def _map_novelty(self,item):
        """
        The function to map the novelty metric across the archive against provided item
        Arguments:
            item: The NoveltyItem to be used for archive mapping.
        Returns:
            The list with distances (novelty scores) of provided item from items stored in this archive.
        """
        distances = [None] * len(self.novel_items)
        for i, n in enumerate(self.novel_items):
            distances[i] = ItemsDistance(
                first_item = n,
                second_item = item,
                distance = self.novelty_metric(n, item)
            )
        
        return distances
    
    def _map_novelty_in_population(self,item,genomes,n_items_map):
        """
        The function to map the novelty metric across the archive and the current population
        against the provided item.
        Arguments:
            item:        The NoveltyItem to be used for archive mapping.
            genomes:     The list of genomes from current population.
            n_items_map: The map of novelty items for the current population by genome ID.
        Returns:
            The list with distances (novelty scores) of provided item from items stored in this archive
            and from the novelty items associated with genomes in current population.
        """
        # first, map item against the archive
        distances = self._map_novelty(item)

        # second, map item against the population
        for genome_id, _ in genomes:
            if genome_id in n_items_map:
                gen_item = n_items_map[genome_id]
                distance = ItemsDistance(
                    first_item = gen_item,
                    second_item = item,
                    distance = self.novelty_metric(gen_item, item)
                )
                distances.append(distance)
        
        return distances
    
    def _novelty_avg_knn(self,item,n_items_map,genomes=None,neighbors=None):
        """
        The function to calculate the novelty score of a given item within the provided population if any
        using a K-nearest neighbor algorithm.
        Argumnets:
            item:        The NoveltyItem to calculate the score
            n_items_map: The map of novelty items for the current population by genome ID
            genomes:     The list of genomes from population or None
            neighbors:   The number of neighbors to use for calculation (None - to use archive settings)
        Returns:
            The density within the vicinity of the provided NoveltyItem calculated using the K-nearest neighbor
            algorithm. This density can be used either as a novelty score value or as a fitness value.
        """
        distances = None
        if genomes is not None:
            distances = self._map_novelty_in_population(
                item=item,genomes=genomes,n_items_map=n_items_map)
        else:
            distances = self._map_novelty(item=item)
        
        # sort by distance (novelty) in ascending order - the minimal first
        distances.sort()
        # if neighbors size not set - use value from archive parameters
        if neighbors is None:
            neighbors = self.neighbors
        
        density, weight, distance_sum = 0.0, 0.0, 0.0
        length = len(distances)
        if length >= ArchiveSeedAmount:
            length = neighbors
            if len(distances) < length:
                # the number of mapped distances id less than number of neighbors
                length = len(distances)
            i = 0
            while weight < float(neighbors) and i < length:
                distance_sum += distances[i].distance
                weight += 1.0
                i += 1
            
            # finding the average
            if weight > 0:
                density = distance_sum / weight
        
        return density
  • visualize.py
from __future__ import print_function

import copy
import warnings
import random
import argparse
import os

import graphviz
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import numpy as np

import geometry
import agent
import maze_environment as maze

def plot_stats(statistics, ylog=False, view=False,filename='avg_fitness.svg'):
    """
    Plots the polulation's average and best fitness.
    """
    if plt is None:
        warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
        return
    
    generation = range(len(statistics.most_fit_genomes))
    best_fitness = [c.fitness for c in statistics.most_fit_genomes]
    avg_fitness = np.array(statistics.get_fitness_mean())
    stdev_fitness = np.array(statistics.get_fitness_stdev())

    plt.plot(generation, avg_fitness, 'b-', label='average')
    plt.plot(generation, avg_fitness - stdev_fitness, 'g-.', label="-1 sd")
    plt.plot(generation, avg_fitness + stdev_fitness, 'g-', label="+1 sd")
    plt.plot(generation, best_fitness, 'r-', label="best")

    plt.title("Population's average and best fitness")
    plt.xlabel("Generations")
    plt.ylabel("Fitness")
    plt.grid()
    plt.legend(loc="best")
    if ylog:
        plt.gca().set_yscale('symlog')

    plt.savefig(filename)
    if view:
        plt.show()

    plt.close()

def plot_species(statistics, view=False, filename='speciation.svg'):
    """
    Visualizes speciation throught evolution.
    """
    if plt is None:
        warnings.warn("This display is not available due to a missing optional dependency (matplotlib)")
        return
    
    species_sizes = statistics.get_species_sizes()
    num_generations = len(species_sizes)
    curves = np.array(species_sizes).T

    fig, ax = plt.subplots()
    ax.stackplot(range(num_generations), *curves)

    plt.title("Speciation")
    plt.ylabel("Size per Species")
    plt.xlabel("Generations")

    plt.savefig(filename)

    if view:
        plt.show()

    plt.close()

def draw_net(
    config, genome, view=False,
    filename=None, directory=None, 
    node_names=None, show_disabled=True,
    prune_unused=False,node_colors=None,
    fmt='svg'):
    """
    Receives a genome and draws a neural network with arbitrary topology.
    """
    # Attributes for network nodes
    if graphviz is None:
        warnings.warn("This display is not available due to a missing optional dependency (graphviz)")
        return

    if node_names is None:
        node_names = {}
    
    assert type(node_names) is dict

    if node_colors is None:
        node_colors = {}
    
    assert type(node_colors) is dict

    node_attrs = {
        'shape': 'circle',
        'fontsize': '9',
        'height': '0.2',
        'width': '0.2'
    }

    dot = graphviz.Digraph(format=fmt,node_attr=node_attrs)

    inputs = set()
    for k in config.genome_config.input_keys:
        inputs.add(k)
        name = node_names.get(k,str(k))
        input_attrs = {
            'style': 'filled',
            'shape': 'box',
            'fillcolor': node_colors.get(k, 'lightgray')
        }
        dot.node(name, _attributes=input_attrs)
    
    outputs = set()
    for k in config.genome_config.output_keys:
        outputs.add(k)
        name = node_names.get(k,str(k))
        node_attrs = {
            'style': 'filled',
            'fillcolor': node_colors.get(k, 'lightblue')
        }
        dot.node(name, _attributes=node_attrs)
    
    if prune_unused:
        connections = set()
        for cg in genome.connections.values():
            if cg.enabled or show_disabled:
                connections.add((cg.in_node_id,cg.out_node_id))
        
        used_nodes = copy.copy(outputs)
        pending = copy.copy(outputs)
        while pending:
            new_pending = set()
            for a,b in connections:
                if b in pending and a not in used_nodes:
                    new_pending.add(a)
                    used_nodes.add(a)
            pending = new_pending
    else:
        used_nodes = set(genome.nodes.keys())
    
    for n in used_nodes:
        if n in inputs or n in outputs:
            continue

        attrs = {
            'style': 'filled',
            'fillcolor': node_colors.get(n,'white')
        }
        dot.node(str(n), _attributes=attrs)
    
    for cg in genome.connections.values():
        if cg.enabled or show_disabled:
            # if cg.input not in used_nodes or cg.output not in used_nodes:
            #     continue
            input_node, output_node = cg.key
            a = node_names.get(input_node,str(input_node))
            b = node_names.get(output_node,str(output_node))
            style = 'solid' if cg.enabled else 'dotted'
            color = 'green' if cg.weight > 0 else 'red'
            width = str(0.1 + abs(cg.weight / 5.0))
            dot.edge(a, b, _attributes={'style': style, 'color': color, 'penwidth': width})
    
    dot.render(filename, directory, view=view)
    
    return dot

def draw_agent_path(
    maze_env, path_points, genome,
    filename=None, view=False,show_axes=False,
    width=400,height=400,fig_height=4):
    """
    The function to draw path of the maze solver agent through the maze.
    Arguments:
        maze_env: The maze environment configuration.
        path_points: The list of agent positions during simulation.
        genome: The genome of solver agent.
        filename: The name of file to store plot.
        view: The flag to indicate whether to view plot.
        width: The width of drawing in pixels
        height: The height of drawing in pixels
        fig_height: The plot figure height in inches
    """
    # initialize plotting
    fig, ax = plt.subplots()
    fig.set_dpi(100)
    fig_width = fig_height * (float(width) / float(height)) - 0.2
    print("Plot figure width: %.1f, height: %.1f" % (fig_width,fig_height))
    fig.set_size_inches(fig_width, fig_height)
    ax.set_xlim(0, width)
    ax.set_ylim(0, height)

    ax.set_title('Genome ID: %s, Path Length: %d' % (genome.key,len(path_points)))
    #draw path
    for p in path_points:
        circle = plt.Circle((p.x,p.y),2.0,facecolor='b')
        ax.add_patch(circle)

    # draw maze
    _draw_maze_(maze_env, ax)

    # turn off axis rendering
    if not show_axes:
        ax.axis('off')
    
    # Invert Y axis to have coordinates origin at the top left
    ax.invert_yaxis()

    # save figure to file
    if filename is not None:
        plt.savefig(filename)
    
    if view:
        plt.show()
    
    plt.close()

def draw_maze_records(
    maze_env, records,best_threshold=0.8,
    filename=None, view=False, show_axes=False,
    width=400,height=400,fig_height=7):
    """
    The function to draw maze with recorded agents positions.
    Arguments:
        maze_env:       The maze environment configuration.
        records:        The records of solver agents collected during NEAT execution.
        best_threshold: The minimal fitness of maze solving agent's species to be included into the best ones.
        filename:       The name of file to store plot.
        view:           The flag to indicate whether to view plot.
        width:          The width of drawing in pixels
        height:         The height of drawing in pixels
        fig_height:      The plot figure height in inches
    """
    # find the distance threshold for the best species
    dist_threshold = maze_env.agent_distance_to_exit() * (1.0 - best_threshold)
    # generate color palette and find the best species IDS
    max_sid = 0
    for r in records:
        if r.species_id > max_sid:
            max_sid = r.species_id
    colors = [None] * (max_sid + 1)
    sp_idx = [False] * (max_sid + 1)
    best_sp_idx = [0] * (max_sid + 1)
    for r in records:
        if not sp_idx[r.species_id]:
            sp_idx[r.species_id] = True
            rgb = (random.random(),random.random(),random.random())
            colors[r.species_id] = rgb
        if maze_env.exit_point.distance(geometry.Point(r.x,r.y)) <= dist_threshold:
            best_sp_idx[r.species_id] += 1
    
    # initialize plotting
    fig = plt.figure()
    fig.set_dpi(100)
    fig_width = fig_height * (float(width)/float(2.0 * height)) - 0.2
    print("Plot figure width: %.1f, height: %.1f" % (fig_width,fig_height))
    fig.set_size_inches(fig_width,fig_height)
    ax1,ax2 = fig.subplots(2,1,sharex=True)
    ax1.set_xlim(0, width)
    ax1.set_ylim(0, height)
    ax2.set_xlim(0, width)
    ax2.set_ylim(0, height)

    # draw species
    n_best_species = 0
    for i,v in enumerate(best_sp_idx):
        if v > 0:
            n_best_species += 1
            _draw_species_(records=records,sid=i,colors=colors,ax=ax1)
        else:
            _draw_species_(records=records,sid=i,colors=colors,ax=ax2)
    
    ax1.set_title('fitness >= %.1f, species: %d' % (best_threshold, n_best_species))
    ax2.set_title('fitness < %.1f' % best_threshold)

    # draw maze
    _draw_maze_(maze_env, ax1)
    _draw_maze_(maze_env, ax2)
    
    # turn off axis rendering
    if not show_axes:
        ax1.axis('off')
        ax2.axis('off')
    # Invert Y axis to have coordinates origin at the top left
    ax1.invert_yaxis()
    ax2.invert_yaxis()

    # Save figure to file
    if filename is not None:
        plt.savefig(filename)

    if view:
        plt.show()

    plt.close()

def _draw_species_(records, sid, colors, ax):
    """
    The function to draw specific species from the records with
    particular color.
    Arguments:
        records: The records of solver agents collected during NEAT execution.
        sid: The species IS
        colors: The colors table by species ID
        ax: The figure axis instance
    """
    for r in records:
        if r.species_id == sid:
            circle = plt.Circle((r.x,r.y),2.0,facecolor=colors[r.species_id])
            ax.add_patch(circle)

def _draw_maze_(maze_env,ax):
    """
    The function to draw maze environment
    Arguments:
        maze_env: The maze environment configuration.
        ax: The figure axis instance
    """
    for wall in maze_env.walls:
        line = plt.Line2D((wall.a.x,wall.b.x),(wall.a.y,wall.b.y),lw=1.5)
        ax.add_line(line)
    
    # draw start point
    start_circle = plt.Circle((maze_env.agent.location.x,maze_env.agent.location.y),
        radius=2.5,facecolor=(0.6,1.0,0.6),edgecolor='w')
    ax.add_patch(start_circle)

    # draw exit point
    exit_circle = plt.Circle((maze_env.exit_point.x,maze_env.exit_point.y),
        radius=2.5,facecolor=(1.0,0.2,0.0),edgecolor='w')
    ax.add_patch(exit_circle)

if __name__ == '__main__':
    # read command line parameters
    parser = argparse.ArgumentParser(description="The maze experiment visualizer.")
    parser.add_argument('-m', '--maze', default='medium', help='The maze configuration to use.')
    parser.add_argument('-r', '--records', help='The records file.')
    parser.add_argument('-o', '--output', help='The file to store the plot.')
    parser.add_argument('--width', type=int, default=400, help='The width of the subplot')
    parser.add_argument('--height', type=int, default=400, help='The height of the subplot')
    parser.add_argument('--fig_height', type=float, default=7, help='The height of the plot figure')
    parser.add_argument('--show_axes', type=bool, default=False, help='The flag to indicate whether to show plot axes.')
    args = parser.parse_args()

    local_dir = os.path.dirname(__file__)
    if not (args.maze == 'medium' or args.maze == 'hard'):
        print("Unsupported maze configuration: %s" % args.maze)
        exit(1)
    
    # read maze environment
    maze_env_config = os.path.join(local_dir,'%s_maze.txt' % args.maze)
    maze_env = maze.read_environment(maze_env_config)

    # read agents records
    rs = agent.AgentRecordStore()
    rs.load(args.records)

    # render visualization
    random.seed(42)
    draw_maze_records(
        maze_env,rs.records,
        width=args.width,
        height=args.height,
        fig_height=args.fig_height,
        view=True,
        show_axes=args.show_axes,
        filename=args.output
    )
posted @ 2021-04-24 21:45  盼小辉丶  阅读(314)  评论(0编辑  收藏  举报