Hive(一)—— 启动与基本使用

一、基本概念

The Apache Hive™ data warehouse software facilitates reading, writing, and managing large datasets residing in distributed storage and queried using SQL syntax.

Hive数据仓库软件,致力于解决读写、管理分布式存储中的大规模数据集,以及使用SQL语法进行查询的问题。

Hive用于解决海量结构化日志的数据统计问题。

Hive是基于Hadoop的一个数据仓库工具。本质是将HQL(Hive的查询语言)转化成MapReduce程序。

HIve处理的数据存储在HDFS
HIve分析数据底层的默认实现是MapReduce
执行程序运行在Yarn上

Hive的优缺点

优点:

可以快速进行数据分析,不需要写MapReduce程序。
MapReduce适合处理大数据,不适合处理小数据

缺点:

HQL表达能力有限,迭代式算法不能表达,粒度较粗,调优比较困难。

自定义函数类别:

  • UDF
  • UDAF
  • UDTF

架构原理

执行顺序:解析器-编译器-优化器-执行器

Hive与数据库对比

HIve相比数据库,读多写少,没有索引,需要暴力扫描所有数据,即使引入了MapReduce机制,也不适合实时查询,扩展性和Hadoop的是一致的,扩展性强。

二、安装与启动

下载hive-1.2.2

需要启动Hadoop的HDFS和Yarn

配置conf/hive-env.sh

export HADOOP_HOME=/usr/local/hadoop(改成hadoop-home路径)
export HIVE_CONF_DIR=/ur/local/hive/conf

启动

bin/hive

三、Hive语句

显示数据库

show databases;

使用本地模式执行

hive> SET mapreduce.framework.name=local;

创建表、插入记录、查询记录

use default;

#### 创建表
create table student(id int,name string);

#### 插入记录
insert into table student values(1,'fonxian');

#### 查询记录
select * from student;

在Hadoop上查看记录

从文件系统加载数据

创建数据文本student.txt

3,kafka
4,flume
5,hbase
6,zookeeper

创建表,定义分隔符

create table stu1(id int,name string) row format delimited fields terminated by ',';

加载数据

load data local inpath '/usr/local/hive/data/student.txt' into table stu1;

查看数据后的执行效果

四、Hive Hook使用

添加依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>hive-hook-example</groupId>
    <artifactId>Hive-hook-example</artifactId>
    <version>1.0</version>

    <dependencies>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-exec</artifactId>
            <version>1.1.0</version>
        </dependency>
    </dependencies>

</project>

创建HiveExampleHook

public class HiveExampleHook implements ExecuteWithHookContext {
    public void run(HookContext hookContext) throws Exception {
        System.out.println("operation name :" + hookContext.getQueryPlan().getOperationName());
        System.out.println(hookContext.getQueryPlan().getQueryPlan());
        System.out.println("Hello from the hook !!");
    }
}

编译好,获得Hive-hook-example-1.0.jar

hive> add jar Hive-hook-example-1.0.jar

hive> set hive.exec.pre.hooks=HiveExampleHook;

hive> select * from student;

operation name :QUERY
Query(queryId:fangzhijie_20191221231550_0e949bbf-f8f7-45a8-8726-c1cdd679cef9, queryType:null, queryAttributes:{queryString=select * from student}, queryCounters:null, stageGraph:Graph(nodeType:STAGE, roots:null, adjacencyList:null), stageList:null, done:false, started:true)
Hello from the hook !!
OK
Time taken: 1.718 seconds
Time taken: 1.68 seconds

五、使用MySQL存储元数据

在本地安装mysql,创建hive-site.xml

<configuration>
    <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <value>jdbc:mysql://127.0.0.1:3306/metastore?createDatabaseIfNotExist=true</value>
        <description>JDBC connect string for a JDBC metastore</description>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionDriverName</name>
        <value>com.mysql.jdbc.Driver</value>
        <description>Driver class name for a JDBC metastore</description>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionUserName</name>
        <value>root</value>
        <description>username to use against metastore database</description>
    </property>
    <property>
        <name>javax.jdo.option.ConnectionPassword</name>
        <value>123456</value>
        <description>password to use against metastore database</description>
    </property>
</configuration>

执行bin/hive,查看数据库,发现有创建表。

在hive中执行reate table aaa(id int);,HDFS中有创建该文件,且metastore的TBLS表中有记录。

六、Beeline

HiveServer2 (introduced in Hive 0.11) has its own CLI called Beeline. HiveCLI is now deprecated in favor of Beeline, as it lacks the multi-user, security, and other capabilities of HiveServer2. To run HiveServer2 and Beeline from shell:

HiveServer2有自己的客户端,叫Beeline。HiveCLI目前已经废弃了,建议使用Beeline。

使用Beeline连接HiveServer2

beeline -u "jdbc:hive2://host:port/;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=hiveserver2" -n username -p password

七、报错信息解决&问题定位

修改配置不生效

可能是配置路径的问题,查看hive-env.sh,最后发现hive配置路径写错。

错误的路径配置,导致根本找不到配置路径

export HIVE_CONF_DIR=/ur/local/hive/conf

正确的配置

export HIVE_CONF_DIR=/usr/local/hive/conf

插入数据失败

hive> insert into table student values(1,'fonxian');
Query ID = fangzhijie_20191205061055_6c8c233e-2d46-470a-972d-38f36bb8068c
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1575495654045_0004, Tracking URL = http://localhost:8088/proxy/application_1575495654045_0004/
Kill Command = /usr/local/hadoop/bin/hadoop job  -kill job_1575495654045_0004
Hadoop job information for Stage-1: number of mappers: 0; number of reducers: 0
2019-12-05 06:10:58,803 Stage-1 map = 0%,  reduce = 0%
Ended Job = job_1575495654045_0004 with errors
Error during job, obtaining debugging information...
FAILED: Execution Error, return code 2 from org.apache.hadoop.hive.ql.exec.mr.MapRedTask
MapReduce Jobs Launched:
Stage-Stage-1:  HDFS Read: 0 HDFS Write: 0 FAIL
Total MapReduce CPU Time Spent: 0 msec

解决方法:执行下面的命令

hive> SET mapreduce.framework.name=local;

分析:

参考官方文档

Hive compiler generates map-reduce jobs for most queries. These jobs are then submitted to the Map-Reduce cluster indicated by the variable:  mapred.job.tracker


Hive编译器 为大多数查询操作生成MR任务,这些任务之后会被提交到MR集群。


Hive fully supports local mode execution. To enable this, the user can enable the following option:

Hive支持本地模式执行,用户可以使用下列操作:

hive> SET mapreduce.framework.name=local;

参考文档

Hive Getting Started
尚硅谷大数据课程之Hive
hive-hook-example
Beeline 官方文档

posted @ 2019-12-04 21:30  清泉白石  阅读(7145)  评论(0编辑  收藏  举报