实现逻辑回归-神经网络
一、基本概念
1、逻辑回归与线性回归的区别?
线性回归
预测得到的是一个数值,而逻辑回归
预测到的数值只有0、1两个值。逻辑回归
是在线性回归的基础上,加上一个sigmoid函数
,让其值位于0-1
之间,最后获得的值大于0.5
判断为1
,小于等于0.5
判断为0
二、逻辑回归的推导
\(\hat y\)表示预测值
,\(y\)表示训练标签值
1、一般公式
2、向量化
3、激活函数
引入sigmoid函数(用\(\sigma\)表示),使\(\hat y\)值位于0-1
4、损失函数
损失函数用\(L\)表示
因梯度下降
效果不好,换用交叉熵损失函数
5、代价函数
代价函数用\(J\)表示
展开
6、正向传播
7、反向传播
求出\(da\) = 3,表示\(J\)对\(a\)的偏导数
求出\(db\) = 6
求出\(dc\) = 6
对Sigmod函数
求导
8、反向传播的意义
修正参数,使代价函数值
减少,预测值
接近实际值
。
举个例子:
(1) 玩一个猜数游戏,目标数字为150。
(2) 输入训练样本值: 你第一次猜出一个数字为x = 10
(3) 设置初始权重: 设置一个权重值,比如权重w设为0.5
(4) 正向计算: 进行计算,获得值wx
(5) 求出代价函数: 出题人说差了多少(说的不是具体数字,而是用0-10表示,10表示差的离谱,1表示非常接近,0表示正确)
(6) 反向传播或求导: 你通过出题人的结论,去一点点修正权重(增加w或减少w)。
(7) 重复(4)操作,直到无限接近或等于目标数字。
机器学习,就是在训练中改进、优化,找到最有泛化能力的规则。
三、神经网络实现
1、实现激活函数Sigmoid
def sigmoid(z):
s = 1.0 / (1.0 + np.exp(-z))
return s
2、参数初始化
def initialize_with_zeros(dim):
w = np.zeros([dim,1])
b = 0
return w, b
3、前后向传播
def propagate(w, b, X, Y):
m = X.shape[1]
A = sigmoid(np.dot(w.T,X) + b)
cost = (- 1.0 / m ) * np.sum(Y*np.log(A) + (1-Y)*np.log(1-A))
dw = (1.0 / m) * np.dot(X,(A - Y).T)
db = (1.0 / m) * np.sum(A - Y)
cost = np.squeeze(cost)
grads = {"dw": dw,"db": db}
return grads, cost
4、优化器实现
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost = False):
costs = []
for i in range(num_iterations):
# Cost and gradient calculation
grads, cost = propagate(w,b,X,Y)
# Retrieve derivatives from grads
dw = grads["dw"]
db = grads["db"]
# update rule
w = w - learning_rate * dw
b = b - learning_rate * db
# Record the costs
if i % 100 == 0:
costs.append(cost)
# Print the cost every 100 training iterations
if print_cost and i % 100 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
params = {"w": w,
"b": b}
grads = {"dw": dw,
"db": db}
return params, grads, costs
5、预测函数
def predict(w, b, X):
m = X.shape[1]
Y_prediction = np.zeros((1,m))
w = w.reshape(X.shape[0], 1)
# Compute vector "A" predicting the probabilities of a cat being present in the picture
A = sigmoid(np.dot(w.T,X)+b)
for i in range(A.shape[1]):
# Convert probabilities A[0,i] to actual predictions p[0,i]
if A[0][i] <= 0.5:
Y_prediction[0][i] = 0
else:
Y_prediction[0][i] = 1
return Y_prediction
6、代码模块整合
def model(X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5, print_cost = False):
# initialize parameters with zeros (≈ 1 line of code)
w, b = initialize_with_zeros(train_set_x.shape[0])
# Gradient descent (≈ 1 line of code)
parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)
# Retrieve parameters w and b from dictionary "parameters"
w = parameters["w"]
b = parameters["b"]
Y_prediction_test = predict(w, b, X_test)
Y_prediction_train = predict(w, b, X_train)
# Print train/test Errors
print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
d = {"costs": costs,
"Y_prediction_test": Y_prediction_test,
"Y_prediction_train" : Y_prediction_train,
"w" : w,
"b" : b,
"learning_rate" : learning_rate,
"num_iterations": num_iterations}
return d
7、运行程序
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
结果
Cost after iteration 0: 0.693147
Cost after iteration 100: 0.584508
Cost after iteration 200: 0.466949
Cost after iteration 300: 0.376007
Cost after iteration 400: 0.331463
Cost after iteration 500: 0.303273
Cost after iteration 600: 0.279880
Cost after iteration 700: 0.260042
Cost after iteration 800: 0.242941
Cost after iteration 900: 0.228004
Cost after iteration 1000: 0.214820
Cost after iteration 1100: 0.203078
Cost after iteration 1200: 0.192544
Cost after iteration 1300: 0.183033
Cost after iteration 1400: 0.174399
Cost after iteration 1500: 0.166521
Cost after iteration 1600: 0.159305
Cost after iteration 1700: 0.152667
Cost after iteration 1800: 0.146542
Cost after iteration 1900: 0.140872
train accuracy: 99.04306220095694 %
test accuracy: 70.0 %
8、更多的分析
learning_rates = [0.01, 0.001, 0.0001]
models = {}
for i in learning_rates:
print ("learning rate is: " + str(i))
models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False)
print ('\n' + "-------------------------------------------------------" + '\n')
for i in learning_rates:
plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"]))
plt.ylabel('cost')
plt.xlabel('iterations (hundreds)')
legend = plt.legend(loc='upper center', shadow=True)
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()
9、测试图片
## START CODE HERE ## (PUT YOUR IMAGE NAME)
my_image = "my_image.jpg" # change this to the name of your image file
## END CODE HERE ##
# We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
my_predicted_image = predict(d["w"], d["b"], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
结果
y = 0.0, your algorithm predicts a "non-cat" picture.
参考文档
关于作者
后端程序员,五年开发经验,从事互联网金融方向。技术公众号「清泉白石」。如果您在阅读文章时有什么疑问或者发现文章的错误,欢迎在公众号里给我留言。