Python自定义:粒子群优化算法
#!usr/bin/env python
#-*- coding:utf-8 _*-
"""
@author:fonttian
@file: 粒子群优化算法.py
@time: 2017/10/15
"""
# References from : http://blog.csdn.net/kunshanyuz/article/details/63683145
import numpy as np
import random
import matplotlib.pyplot as plt
#----------------------PSO参数设置---------------------------------
class PSO():
def __init__(self,pN,dim,max_iter,min_bl = True):
self.w = 0.8
self.c1 = 2
self.c2 = 2
self.r1= 0.6
self.r2=0.3
self.pN = pN #粒子数量
self.dim = dim #搜索维度
self.max_iter = max_iter #迭代次数
self.min_bl = min #是否为最小化适应度函数
self.X = np.zeros((self.pN,self.dim)) #所有粒子的位置和速度
self.V = np.zeros((self.pN,self.dim))
self.pbest = np.zeros((self.pN,self.dim)) #个体经历的最佳位置和全局最佳位置
self.gbest = np.zeros((1,self.dim))
self.p_fit = np.zeros(self.pN) #每个个体的历史最佳适应值
self.fit = 1e10 #全局最佳适应值
self.init_Population() # 初始化种群
#---------------------目标函数Sphere函数-----------------------------
def function(self,x):
sum = 0
length = len(x)
x = x**2
for i in range(length):
sum += x[i]
if self.min_bl == True:
return sum
else:
return -sum
#---------------------初始化种群----------------------------------
def init_Population(self):
for i in range(self.pN):
for j in range(self.dim):
self.X[i][j] = random.uniform(0,1)
self.V[i][j] = random.uniform(0,1)
self.pbest[i] = self.X[i]
tmp = self.function(self.X[i])
self.p_fit[i] = tmp
if(tmp < self.fit):
self.fit = tmp
self.gbest = self.X[i]
#----------------------更新粒子位置----------------------------------
def iterator(self):
fitness = []
for t in range(self.max_iter):
for i in range(self.pN): #更新gbest\pbest
temp = self.function(self.X[i])
if(temp<self.p_fit[i]): #更新个体最优
self.p_fit[i] = temp
self.pbest[i] = self.X[i]
if(self.p_fit[i] < self.fit): #更新全局最优
self.gbest = self.X[i]
self.fit = self.p_fit[i]
for i in range(self.pN):
self.V[i] = self.w*self.V[i] + self.c1*self.r1*(self.pbest[i] - self.X[i])\
+ self.c2*self.r2*(self.gbest - self.X[i])
self.X[i] = self.X[i] + self.V[i]
fitness.append(self.fit)
# print("输出当前最优值",self.fit) #输出最优值
return fitness
#----------------------绘图----------------------------------
def ShowData(self,pltarg,line=["b",3]):
plt.figure(1)
plt.title(pltarg[0])
plt.xlabel("iterators", size=pltarg[1][0])
plt.ylabel("fitness", size=pltarg[1][1])
t = np.array([t for t in range(pltarg[2][0],pltarg[2][1])])
fitness = np.array(self.iterator())
plt.plot(t, self.iterator(), color=line[0], linewidth=line[1])
plt.show()
return self.fit
#----------------------获取数据----------------------------------
def GetResult(self,pltarg = ["Figure1",[14,14],[0,100]] ,line = ["b",3],show_bl = True,):
if show_bl == True:
return self.ShowData(pltarg,line=["b",3])
else:
return self.iterator()
#----------------------定义参数-----------------------
pltarg = ["Figure1",[14,14],[0,100]]
line = ["b",3]
#----------------------程序执行---输出结果----------------------------------
print("全局最优值 : ",PSO(pN=30,dim=5,max_iter=100).GetResult(pltarg,line,True))
#----------------------程序执行-----------------------
# my_pso = PSO(pN=30,dim=5,max_iter=100)
# fitness = my_pso.GetResult(pltarg)
#----------------------输出结果----------------------------------
# print("全局最优值 : ",fitness)
# 原来的程序
#----------------------程序执行-----------------------
# my_pso = PSO(pN=30,dim=5,max_iter=100)
# fitness = my_pso.GetResult(pltarg)
# my_pso.init_Population()
# fitness = my_pso.iterator()
# -------------------画图--------------------
# plt.figure(1)
# plt.title("Figure1")
# plt.xlabel("iterators", size=14)
# plt.ylabel("fitness", size=14)
# t = np.array([t for t in range(0,100)])
# fitness = np.array(fitness)
# plt.plot(t,fitness, color='b',linewidth=3)
# plt.show()