绘制决策树

绘制出决策树

经过训练的决策树,我们可以使用 export_graphviz 导出器以 Graphviz 格式导出决策树. 如果你是用 conda 来管理包,那么安装 graphviz 二进制文件和 python 包可以用以下指令安装


conda install python-graphviz

或者,可以从 graphviz 项目主页下载 graphviz 的二进制文件,并从 pypi 安装 Python 包装器,并安装 ‘pip install graphviz` .以下是在整个 iris 数据集上训练的上述树的 graphviz 导出示例; 其结果被保存在 iris.pdf 中:

from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf_iris = tree.DecisionTreeClassifier()
clf_iris = clf.fit(iris.data, iris.target)

* 下面的代码可以到处我们的决策树 *

:func:export_graphviz 出导出还支持各种美化,包括通过他们的类着色节点(或回归值),如果需要,使用显式变量和类名。

* 注意:默认情况下,会导出图形文件*

* 更详细的内容请参考 sklearn官方文档:sklearn.tree.export_graphviz*

Jupyter notebook也可以自动找出相同的模块

import graphviz # doctest: +SKIP
dot_data = tree.export_graphviz(clf, out_file=None) # doctest: +SKIP
graph = graphviz.Source(dot_data) # doctest: +SKIP
graph.render("iris") # doctest: +SKIP


dot_data = tree.export_graphviz(clf, out_file=None, # doctest: +SKIP
                            feature_names=iris.feature_names,  # doctest: +SKIP
                            class_names=iris.target_names,  # doctest: +SKIP
                            filled=True, rounded=True,  # doctest: +SKIP
                            special_characters=True)  # doctest: +SKIP
graph = graphviz.Source(dot_data)  # doctest: +SKIP
graph # doctest: +SKIP

绘制决策树

* 之后依旧可以使用该函数进行预测数据等操作*

clf_iris.predict(iris.data[:1, :]) 
array([0])

画出决策树的分类区域

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

# Parameters
n_classes = 3
plot_colors = "ryb"
plot_step = 0.02

# Load data
iris = load_iris()

for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
                                [1, 2], [1, 3], [2, 3]]):
    # We only take the two corresponding features
    X = iris.data[:, pair]
    y = iris.target

    # Train
    clf = DecisionTreeClassifier().fit(X, y)

    # Plot the decision boundary
    plt.subplot(2, 3, pairidx + 1)

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
                         np.arange(y_min, y_max, plot_step))
    plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)

    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)

    plt.xlabel(iris.feature_names[pair[0]])
    plt.ylabel(iris.feature_names[pair[1]])

    # Plot the training points
    for i, color in zip(range(n_classes), plot_colors):
        idx = np.where(y == i)
        plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
                    cmap=plt.cm.RdYlBu, edgecolor='black', s=15)

plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend(loc='lower right', borderpad=0, handletextpad=0)
plt.axis("tight")
plt.show()

绘制决策树的分类区域

参考资料

posted @ 2017-12-17 12:04  FontTian  阅读(561)  评论(0编辑  收藏  举报