Android消息机制

概述

  Android UI是线程不安全的,如果在子线程中尝试进行UI操作,程序就有可能会崩溃,因为在ViewRootImpl.checkThread对UI操作做了验证,导致必须在主线程中访问UI,但Android在主线程中进行耗时的操作会导致ANR,为了解决子线程无法访问UI的矛盾,提供了消息机制。

void checkThread() {
    if (mThread != Thread.currentThread()) {
        throw new CalledFromWrongThreadException(
                "Only the original thread that created a view hierarchy can touch its views.");
    }
}

  Android消息机制主要指Handler的运行机制,Handler的运行需要底层的MessageQueue和Looper的支撑。MQ即消息队列,存储消息的单元,但并不能处理消息,这时需要Looper,它会无限循环查找是否有新消息,有即处理消息,没有就等待。
Handler的创建方式很简单,只需要new一个实例即可,但是当前线程中没有Looper而创建Handler就会导致报错,下面来看下两个Handler的创建过程,看看有什么不一样。

private Handler handler1;
private Handler handler2;

@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
    handler1 = new Handler();
    new Thread(new Runnable() {
        @Override
        public void run() {
            handler2 = new Handler();
        }
    }).start();
}

  运行下会发现handler2会报下面的错误“Can't create handler inside thread that has not called Looper.prepare()”

11-14 11:51:56.591 5751-5769/com.fomin.demo E/AndroidRuntime: FATAL EXCEPTION: Thread-642
    Process: com.fomin.demo, PID: 5751
    java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()
        at android.os.Handler.<init>(Handler.java:200)
        at android.os.Handler.<init>(Handler.java:114)
        at com.fomin.demo.MainActivity$1.run(MainActivity.java:20)
        at java.lang.Thread.run(Thread.java:818)

  为什么handler1没有报错呢?因为Handler的创建时会采用当前线程的Looper来构建内部的消息循环系统,而handler1是在主线程创建的,而主线程已经默认调用Looper.prepareMainLooper()创建Looper,所以handler2创建时需要先调用Looper.prepare()创建Looper。

  接下来看下整个Handler的处理流程并且会具体分析下ThreadLocal、Handler、MessageQueue和Looper,如图:
图片

ThreadLocal工作原理

  ThreadLocal是一个线程内部的的数据存储类,通过它可以在指定的线程中存储数据,存储以后,也只能在指定的线程中获取存储数据,对于其他线程来说则无法获取到数据。在Handler中,需要获取当前的线程的Looper,而Looper作用域就是线程并且不同线程具有不同的Looper,使用ThreadLocal可以轻松实现Looper在线程中的存取。
  先看一个例子,分别在主线程、线程1和线程2设置和访问它的值,如下:

private ThreadLocal<Boolean> mBooleanThreadLocal = new ThreadLocal<>();
Log.d(TAG, "Current Thread: mBooleanThreadLocal is : " + mBooleanThreadLocal.get());
new Thread("Thread#1") {
    @Override
    public void run() {
        mBooleanThreadLocal.set(false);
        Log.d(TAG, "Thread 1: mBooleanThreadLocal is : " + mBooleanThreadLocal.get());

    }
}.start();

new Thread("Thread#2") {
    @Override
    public void run() {
        Log.d(TAG, "Thread 2: mBooleanThreadLocal is : " + mBooleanThreadLocal.get());
    }
}.start();

  运行程序,日志如下:

11-14 14:18:41.731 7754-7754/com.fomin.demo D/MainActivity: Current Thread: mBooleanThreadLocal is : true
11-14 14:18:41.731 7754-7807/com.fomin.demo D/MainActivity: Thread 1: mBooleanThreadLocal is : false
11-14 14:18:41.731 7754-7808/com.fomin.demo D/MainActivity: Thread 2: mBooleanThreadLocal is : null

  日志可以看出,不同线程访问同一个ThreadLocal对象,但是他们的值是不一样的。因为ThreadLocal会从各自的线程中取出一个数据,然后数组根据当前ThreadLocal的索引去查找对应的value值。可以先看下ThreadLocal的set方法:

public void set(T value) {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null)
        map.set(this, value);
    else
        createMap(t, value);
}

  在看下get方法

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    return setInitialValue();
}

  ThreadLocal的get和set方法操作的对象都是当前线程ThreadLocalMap,读写操作仅限于各自线程的内部。这也是为什么ThreadLocal在多个线程中互不干扰的操作。

MessageQueue工作原理

  MessageQueue只有两个操作:插入和读取。其内部是一个单链表的数据结构来维护消息列表,链表的节点就是 Message。它提供了 enqueueMessage() 来进行插入新的消息,提供next() 从链表中取出消息,值得注意的是next()会循环地从链表中取出 Message 交给 Handler,但如果链表为空的话会阻塞这个方法,直到有新消息到来。

boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
        throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
        throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
        if (mQuitting) {
            IllegalStateException e = new IllegalStateException(
                    msg.target + " sending message to a Handler on a dead thread");
            Log.w(TAG, e.getMessage(), e);
            msg.recycle();
            return false;
        }

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}

  enqueueMessage主要操作就是单链表的插入操作,在看下next方法

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

            // Process the quit message now that all pending messages have been handled.
            if (mQuitting) {
                dispose();
                return null;
            }

            // If first time idle, then get the number of idlers to run.
            // Idle handles only run if the queue is empty or if the first message
            // in the queue (possibly a barrier) is due to be handled in the future.
            if (pendingIdleHandlerCount < 0
                    && (mMessages == null || now < mMessages.when)) {
                pendingIdleHandlerCount = mIdleHandlers.size();
            }
            if (pendingIdleHandlerCount <= 0) {
                // No idle handlers to run.  Loop and wait some more.
                mBlocked = true;
                continue;
            }

            if (mPendingIdleHandlers == null) {
                mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
            }
            mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
        }
        ...
        // Reset the idle handler count to 0 so we do not run them again.
        pendingIdleHandlerCount = 0;

        // While calling an idle handler, a new message could have been delivered
        // so go back and look again for a pending message without waiting.
        nextPollTimeoutMillis = 0;
    }
}

  next方法是一个无线信息的方法,如果消息队列没有消息,会一直阻塞在这里。

Looper工作原理

  Looper在Android的消息机制中扮演着消息循环的角色,它不停从MessageQueue查看是否有新消息,有会立即处理,否则会一直阻塞在那里。
Looper会在构造方法中构建一个MessageQueue和当前线程对象。

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}

  Looper提供了两个退出方法quit和quitSafely,区别是前个是直接退出,后一个把消息队列中已有的消息处理完毕后安全退出,均是调用MessageQueue中退出quit方法。

public void quit() {
    mQueue.quit(false);
}
public void quitSafely() {
    mQueue.quit(true);
}

void quit(boolean safe) {
    if (!mQuitAllowed) {
        throw new IllegalStateException("Main thread not allowed to quit.");
    }

    synchronized (this) {
        if (mQuitting) {
            return;
        }
        mQuitting = true;

        if (safe) {
            removeAllFutureMessagesLocked();
        } else {
            removeAllMessagesLocked();
        }

        // We can assume mPtr != 0 because mQuitting was previously false.
        nativeWake(mPtr);
    }
}

  Looper最重要的方法是loop方法,只有调用了loop后,消息系统才会真正的起作用,具体代码如下

/**
 * Run the message queue in this thread. Be sure to call
 * {@link #quit()} to end the loop.
 */
public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    // Allow overriding a threshold with a system prop. e.g.
    // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
    final int thresholdOverride =
            SystemProperties.getInt("log.looper."
                    + Process.myUid() + "."
                    + Thread.currentThread().getName()
                    + ".slow", 0);

    boolean slowDeliveryDetected = false;

    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        // This must be in a local variable, in case a UI event sets the logger
        final Printer logging = me.mLogging;
        if (logging != null) {
            logging.println(">>>>> Dispatching to " + msg.target + " " +
                    msg.callback + ": " + msg.what);
        }

        final long traceTag = me.mTraceTag;
        long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
        long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
        if (thresholdOverride > 0) {
            slowDispatchThresholdMs = thresholdOverride;
            slowDeliveryThresholdMs = thresholdOverride;
        }
        final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
        final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

        final boolean needStartTime = logSlowDelivery || logSlowDispatch;
        final boolean needEndTime = logSlowDispatch;

        if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
            Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
        }

        final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
        final long dispatchEnd;
        try {
            msg.target.dispatchMessage(msg);
            dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        if (logSlowDelivery) {
            if (slowDeliveryDetected) {
                if ((dispatchStart - msg.when) <= 10) {
                    Slog.w(TAG, "Drained");
                    slowDeliveryDetected = false;
                }
            } else {
                if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                        msg)) {
                    // Once we write a slow delivery log, suppress until the queue drains.
                    slowDeliveryDetected = true;
                }
            }
        }
        if (logSlowDispatch) {
            showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
        }

        if (logging != null) {
            logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
        }

        // Make sure that during the course of dispatching the
        // identity of the thread wasn't corrupted.
        final long newIdent = Binder.clearCallingIdentity();
        if (ident != newIdent) {
            Log.wtf(TAG, "Thread identity changed from 0x"
                    + Long.toHexString(ident) + " to 0x"
                    + Long.toHexString(newIdent) + " while dispatching to "
                    + msg.target.getClass().getName() + " "
                    + msg.callback + " what=" + msg.what);
        }

        msg.recycleUnchecked();
    }
}

  loop方法是一个死循环,唯一跳出就是next返回null。如果next返回了新消息,会调用msg.target.dispatchMessage(msg)处理消息(即Handler处理)。

Handler工作原理

  Handler的工作主要包含消息的发送和接收过程。消息发送通过post系列方法和send系列方法来实现,而post最终还是调用sendMessageAtTime方法来实现发送消息。

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}

  可以发现,发送消息最终只是在向消息队列中插入了一条消息,流程MessageQueue——>Looper——>Handler,最终在dispatchMessage处理,由handleMessage消费。

public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}
posted @   fomin  阅读(1084)  评论(0编辑  收藏  举报
编辑推荐:
· SQL Server 内存占用高分析
· .NET Core GC计划阶段(plan_phase)底层原理浅谈
· .NET开发智能桌面机器人:用.NET IoT库编写驱动控制两个屏幕
· 用纯.NET开发并制作一个智能桌面机器人:从.NET IoT入门开始
· 一个超经典 WinForm,WPF 卡死问题的终极反思
阅读排行:
· 支付宝事故这事儿,凭什么又是程序员背锅?有没有可能是这样的...
· 在线客服系统 QPS 突破 240/秒,连接数突破 4000,日请求数接近1000万次,.NET 多
· C# 开发工具Visual Studio 介绍
· 在 Windows 10 上实现免密码 SSH 登录
· C#中如何使用异步编程
点击右上角即可分享
微信分享提示