01-复杂度2 Maximum Subsequence Sum (25分)
Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4
题目有一个测试点是“最大和前面有一段是0”,所以呢基本上就是在老师的代码的基础上做一点点的修改。每次开始新的子序列记录一个位置,当更新最大子序列和的时候更新最大子序列和的start 和 end。
#include <stdio.h>
int main(int argc, char const *argv[])
{
int i, k;
scanf("%d", &k);
int numbers[k];
for (i = 0; i < k; i++) {
scanf("%d", &numbers[i]);
}
int best_sum, current_sum;
int best_start, best_end, current_start;
best_sum = -1;
current_sum = 0;
for (i = 0; i < k; i++) {
current_sum += numbers[i];
if (current_sum > best_sum) {
best_sum = current_sum;
best_start = current_start;
best_end = i;
} else if (current_sum < 0) {
current_sum = 0;
current_start = i + 1;
}
}
if (best_sum > 0) {
printf("%d ", best_sum);
printf("%d %d\n", numbers[best_start], numbers[best_end]);
} else {
printf("0 %d %d\n", numbers[0], numbers[k-1]);
}
return 0;
}
Python 版
k = input()
numbers = list(map(int, input().split()))
best_sum = -1
current_sum = 0
best_start = best_end = current_start = 0
for current_end, x in enumerate(numbers):
current_sum += x
if current_sum > best_sum:
best_sum = current_sum
best_start = current_start
best_end = current_end
elif current_sum < 0:
current_sum = 0
current_start = current_end + 1
if best_sum >= 0:
print(best_sum, numbers[best_start], numbers[best_end])
else:
print(0, numbers[0], numbers[-1])