BFS(广搜)DFS(深搜)算法解析

图是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或联系。对象由顶点(V)表示,而对象之间的关系或者关联则通过图的边(E)来表示。 图可以分为有向图和无向图,一般用G=(V,E)来表示图。经常用邻接矩阵或者邻接表来描述一副图。 在图的基本算法中,最初需要接触的就是图的遍历算法,根据访问节点的顺序,可分为广度优先搜索(BFS)和深度优先搜索(DFS)。


广度优先搜索(BFS) 广度优先搜索在进一步遍历图中顶点之前,先访问当前顶点的所有邻接结点。 a .首先选择一个顶点作为起始结点,并将其染成灰色,其余结点为白色。 b. 将起始结点放入队列中。 c. 从队列首部选出一个顶点,并找出所有与之邻接的结点,将找到的邻接结点放入队列尾部,将已访问过结点涂成黑色,没访问过的结点是白色。如果顶点的颜色是灰色,表示已经发现并且放入了队列,如果顶点的颜色是白色,表示还没有发现 d. 按照同样的方法处理队列中的下一个结点。 基本就是出队的顶点变成黑色,在队列里的是灰色,还没入队的是白色。 用一副图来表达这个流程如下:

1.初始状态,从顶点1开始,队列={1}
2.访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
3.访问2的邻接结点,2出队,4入队,队列={3,4}
4.访问3的邻接结点,3出队,队列={4}
5.访问4的邻接结点,4出队,队列={ 空}

从顶点1开始进行广度优先搜索:

  1. 初始状态,从顶点1开始,队列={1}
  2. 访问1的邻接顶点,1出队变黑,2,3入队,队列={2,3,}
  3. 访问2的邻接结点,2出队,4入队,队列={3,4}
  4. 访问3的邻接结点,3出队,队列={4}
  5. 访问4的邻接结点,4出队,队列={ 空} 结点5对于1来说不可达。 上面的图可以通过如下邻接矩阵表示:
1 int maze[5][5] = {
2      { 0, 1, 1, 0, 0 },
3      { 0, 0, 1, 1, 0 },
4      { 0, 1, 1, 1, 0 },
5      { 1, 0, 0, 0, 0 },
6      { 0, 0, 1, 1, 0 }
7  };

BFS核心代码如下:

 1   #include <iostream>
 2   #include <queue>
 3   #define N 5
 4   using namespace std;
 5   int maze[N][N] = {
 6       { 0, 1, 1, 0, 0 },
 7       { 0, 0, 1, 1, 0 },
 8       { 0, 1, 1, 1, 0 },
 9       { 1, 0, 0, 0, 0 },
10      { 0, 0, 1, 1, 0 }
11  };
12  int visited[N + 1] = { 0, };
13  void BFS(int start)
14  {
15      queue<int> Q;
16      Q.push(start);
17      visited[start] = 1;
18      while (!Q.empty())
19      {
20          int front = Q.front();
21          cout << front << " ";
22          Q.pop();
23          for (int i = 1; i <= N; i++)
24          {
25              if (!visited[i] && maze[front - 1][i - 1] == 1)
26              {
27                  visited[i] = 1;
28                  Q.push(i);
29              }
30          }
31      }
32  }
33  int main()
34  {
35      for (int i = 1; i <= N; i++)
36      {
37          if (visited[i] == 1)
38              continue;
39          BFS(i);
40      }
41      return 0;
42  }

深度优先搜索(DFS) 深度优先搜索在搜索过程中访问某个顶点后,需要递归地访问此顶点的所有未访问过的相邻顶点。 初始条件下所有节点为白色,选择一个作为起始顶点,按照如下步骤遍历: a. 选择起始顶点涂成灰色,表示还未访问 b. 从该顶点的邻接顶点中选择一个,继续这个过程(即再寻找邻接结点的邻接结点),一直深入下去,直到一个顶点没有邻接结点了,涂黑它,表示访问过了 c. 回溯到这个涂黑顶点的上一层顶点,再找这个上一层顶点的其余邻接结点,继续如上操作,如果所有邻接结点往下都访问过了,就把自己涂黑,再回溯到更上一层。 d. 上一层继续做如上操作,知道所有顶点都访问过。 用图可以更清楚的表达这个过程:

1.初始状态,从顶点1开始
2.依次访问过顶点1,2,3后,终止于顶点3
3.从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
4.从顶点5回溯到顶点2,并且终止于顶点2
5.从顶点2回溯到顶点1,并终止于顶点1
6.从顶点4开始访问,并终止于顶点4

从顶点1开始做深度搜索:

  1. 初始状态,从顶点1开始
  2. 依次访问过顶点1,2,3后,终止于顶点3
  3. 从顶点3回溯到顶点2,继续访问顶点5,并且终止于顶点5
  4. 从顶点5回溯到顶点2,并且终止于顶点2
  5. 从顶点2回溯到顶点1,并终止于顶点1
  6. 从顶点4开始访问,并终止于顶点4

    上面的图可以通过如下邻接矩阵表示:

1 int maze[5][5] = {
2      { 0, 1, 1, 0, 0 },
3      { 0, 0, 1, 0, 1 },
4      { 0, 0, 1, 0, 0 },
5      { 1, 1, 0, 0, 1 },
6      { 0, 0, 1, 0, 0 }
7  };

DFS核心代码如下(递归实现):

 1  #include <iostream>
 2  #define N 5
 3  using namespace std;
 4  int maze[N][N] = {
 5      { 0, 1, 1, 0, 0 },
 6      { 0, 0, 1, 0, 1 },
 7      { 0, 0, 1, 0, 0 },
 8      { 1, 1, 0, 0, 1 },
 9      { 0, 0, 1, 0, 0 }
10  };
11  int visited[N + 1] = { 0, };
12  void DFS(int start)
13  {
14      visited[start] = 1;
15      for (int i = 1; i <= N; i++)
16      {
17          if (!visited[i] && maze[start - 1][i - 1] == 1)
18              DFS(i);
19      }
20      cout << start << " ";
21  }
22  int main()
23  {
24      for (int i = 1; i <= N; i++)
25      {
26          if (visited[i] == 1)
27              continue;
28          DFS(i);
29      }
30      return 0;
31  }

非递归实现如下,借助一个栈:

 1  #include <iostream>
 2  #include <stack>
 3  #define N 5
 4  using namespace std;
 5  int maze[N][N] = {
 6      { 0, 1, 1, 0, 0 },
 7      { 0, 0, 1, 0, 1 },
 8      { 0, 0, 1, 0, 0 },
 9      { 1, 1, 0, 0, 1 },
10      { 0, 0, 1, 0, 0 }
11  };
12  int visited[N + 1] = { 0, };
13  void DFS(int start)
14  {
15      stack<int> s;
16      s.push(start);
17      visited[start] = 1;
18      bool is_push = false;
19      while (!s.empty())
20      {
21          is_push = false;
22          int v = s.top();
23          for (int i = 1; i <= N; i++)
24          {
25              if (maze[v - 1][i - 1] == 1 && !visited[i])
26              {
27                  visited[i] = 1;
28                  s.push(i);
29                  is_push = true;
30                  break;
31              }
32          }
33          if (!is_push)
34          {
35              cout << v << " ";
36              s.pop();
37          }
38  
39      }
40  }
41  int main()
42  {
43      for (int i = 1; i <= N; i++)
44      {
45          if (visited[i] == 1)
46              continue;
47          DFS(i);
48      }
49      return 0;
50  }

有的DFS是先访问读取到的结点,等回溯时就不再输出该结点,也是可以的。算法和我上面的区别就是输出点的时机不同,思想还是一样的。DFS在环监测和拓扑排序中都有不错的应用。

posted @ 2018-05-17 17:24  Boblim  阅读(13186)  评论(0编辑  收藏  举报