[python科学计算]numpy中array类矩阵相关方法

使用numpy前需要先导入

import numpy

一、建立矩阵

直接建立

a = numpy.array([[1,2,3],[4,5,6],[7,8,9]])
b = numpy.array([[1,2], [3,4]], dtype=complex )

从tuple建立

a = [[1,2,3],[4,5,6],[7,8,9]]
b = numpy.array(a)

建立特殊矩阵

a = numpy.zeros([4,5]) # all zero
a = numpy.ones([7,6]) # all one
a = numpy.eye(4,7) # 4x7 diagonal
a = numpy.diag(range(5)) # 5x5 diagonal
a = numpy.empty((2,3))
a = numpy.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D
a = numpy.linspace(0, 2, 9) # 9 numbers from 0 to 2
a = numpy.random.random((2,3)) # 随机数矩阵
a = numpy.fromfunction(f,(5,4),dtype=int) # 从函数f(x,y)建立

二、矩阵变换、变形

a.reshape(-1)
a.reshape(3, 4, -1)
a.T # 转置
a.transpose() # 转置
numpy.linalg.inv(a) # 求逆
a.diagonal([offset, axis1, axis2]) # 对角元
numpy.einsum('iijj->ij',a)
numpy.r_[a,b] # 在a中增加新行b
numpy.c_[a,b] # 新列

三、一般运算

y = x # 建立引用,修改x会影响y
y = x.copy() # 建立副本,修改x不会影响y
a.dot(b) # 矩阵乘法
numpy.dot(a,b) # 矩阵乘法
numpy.trace(a) #求迹

四、特殊运算

numpy.einsum('iijj->ij',a)
posted @   羽夜  阅读(15800)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Linux系统下SQL Server数据库镜像配置全流程详解
· 现代计算机视觉入门之:什么是视频
阅读排行:
· 【译】我们最喜欢的2024年的 Visual Studio 新功能
· 个人数据保全计划:从印象笔记迁移到joplin
· Vue3.5常用特性整理
· 重拾 SSH:从基础到安全加固
· 为什么UNIX使用init进程启动其他进程?
点击右上角即可分享
微信分享提示