数理方程:线性非齐次方程在齐次边界条件下的解法

更新:28 MAR 2016

以波动方程为例

\(\dfrac{\partial^2u}{\partial t^2}=a^2\dfrac{\partial^2 u}{\partial x^2}+f(x,t),\qquad 0<x<l,\quad t>0\)

边界条件:齐次

\(u|_{x=0}=u|_{x=l}=0,\qquad t>0\)

初始条件:任意(最后用到Fourier变换)

\(u|_{t=0}=\varphi(x),\ \left.\dfrac{\partial u}{\partial t}\right|_{t=0}=\psi(x),\qquad 0 \leqslant x \leqslant l\)

 

解法:分解待求函数\(u(x,t)\)。设

\(u(x,t)=v(x,t)+w(x,t)\)

将方程非齐次项归结到\(v(x,t)\),将初始条件归结到\(w(x,t)\),即

对于\(v(x,t)\)

\(\dfrac{\partial^2v}{\partial t^2}=a^2\dfrac{\partial^2 v}{\partial x^2}+f(x,t),\qquad 0<x<l,\quad t>0\)

\(v|_{x=0}=v|_{x=l}=0,\qquad t>0\)

\(v|_{t=0}=0,\ \left.\dfrac{\partial v}{\partial t}\right|_{t=0}=0,\qquad 0 \leqslant x \leqslant l\)

对于\(w(x,t)\)

\(\dfrac{\partial^2w}{\partial t^2}=a^2\dfrac{\partial^2 w}{\partial x^2},\qquad 0<x<l,\quad t>0\)

\(w|_{x=0}=w|_{x=l}=0,\qquad t>0\)

\(w|_{t=0}=\varphi(x),\ \left.\dfrac{\partial w}{\partial t}\right|_{t=0}=\psi(x),\qquad 0 \leqslant x \leqslant l\)

针对\(w(x,t)\),按照齐次方程的解法即可

针对\(v(x,t)\),利用常数变易法,将对应齐次方程解的常数系数变成对t的函数

\(v(x,t)=\sum\limits_{n=1}^{\infty}v_n(t)\sin\dfrac{n\pi}{l}x\)

同时将自由项Fourier展开

\(f(x,t)=\sum\limits_{n=1}^{\infty}f_n(t)\sin\dfrac{n\pi}{l}x\)

按照Fourier级数可以求得\(f_n(t)\)

代入原方程,根据三角函数的正交性,对应项系数相等
一般地,可以解出

\(v_n(t)=\dfrac{l}{n\pi a}\int_0^tf_n(\tau)\sin\dfrac{n\pi a(t-\tau)}{l}d\tau\)

posted @ 2016-03-28 10:08  羽夜  阅读(1521)  评论(0编辑  收藏  举报