风-fmgao

导航

Oozie

Oozie的安装和任务调度:

简介

Oozie英文翻译为:驯象人。一个基于工作流引擎的开源框架,由Cloudera公司贡献给Apache,提供对Hadoop
Mapreduce、Pig Jobs的任务调度与协调。Oozie需要部署到Java Servlet容器中运行。主要用于定时调度任务,多任务可以按照执行的逻辑顺序调度。

功能

Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统
Oozie的工作流是一系列动作的直接周期图(DAG)
Oozie协调作业就是通过时间(频率)和有效数据触发当前的Oozie工作流程
Oozie是Yahoo针对Apache Hadoop开发的一个开源工作流引擎。用于管理和协调运行在Hadoop平台上(包括:HDFS、Pig和MapReduce)的Jobs。Oozie是专为雅虎的全球大规模复杂工作流程和数据管道而设计
Oozie围绕两个核心:工作流和协调器,前者定义任务的拓扑和执行逻辑,后者负责工作流的依赖和触发

模块

  1. Workflow:顺序执行流程节点,支持fork(分支多个节点),join(合并多个节点为一个)

  2. Coordinator:定时触发workflow

  3. Bundle Job:绑定多个Coordinator

常用节点

  1. 控制流节点(Control Flow Nodes):控制流节点一般都是定义在工作流开始或者结束的位置,比如start,end,kill等。以及提供工作流的执行路径机制,如decision,fork,join等。

  2. 动作节点(Action Nodes):负责执行具体动作的节点,比如:拷贝文件,执行某个Shell脚本等等。

部署

所需软件链接 链接:链接:https://pan.baidu.com/s/18_iOFGL06g7_Ye-mZZRwag 提取码:qlbu

部署 Hadoop

这里不详细介绍,请查阅Hadoop安装,这里用的是Clouder公司的CDH版本的Hadop。

修改配置

core-site.xml

[hadoop@datanode1 hadoop]$ vim core-site.xml
<configuration>
        <!-- 指定HDFS中NameNode的地址 -->
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://datanode1:9000</value>
        </property>
        <!-- 指定hadoop运行时产生文件的存储目录 -->
        <property>
                <name>hadoop.tmp.dir</name>
                <value>/opt/module/cdh/hadoop-2.5.0-cdh5.3.6/data</value>
        </property>
         <property>
                <name>fs.trash.interval </name>
                <value>60</value>
        </property>
        <!-- Oozie Server的Hostname -->
        <property>
                <name>hadoop.proxyuser.hadoop.hosts</name>
                <value>*</value>
        </property>

        <!-- 允许被Oozie代理的用户组 -->
        <property>
                <name>hadoop.proxyuser.hadoop.groups</name>
                <value>*</value>
        </property>
</configuration>

 hadoop.proxyuser.admin.hosts类似属性中的hadoop用户替换成你的hadoop用户。因为我的用户名就是hadoop

yarn-site.xml

[hadoop@datanode1 hadoop]$ vim yarn-site.xml
<configuration>
        <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
        </property>

        <property>
                <name>yarn.resourcemanager.hostname</name>
                <value>datanode2</value>
        </property>

        <property>
                <name>yarn.log-aggregation-enable</name>
                <value>true</value>
        </property>

        <property>
                <name>yarn.log-aggregation.retain-seconds</name>
                <value>86400</value>
        </property>

        <!-- 任务历史服务 -->
        <property>
                <name>yarn.log.server.url</name>
                <value>http://datanode1:19888/jobhistory/logs/</value>
        </property>
</configuration>

 mapred-site.xml

<configuration>
        <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <!-- 配置 MapReduce JobHistory Server 地址 ,默认端口10020 -->
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>datanode1:10020</value>
    </property>
    <!-- 配置 MapReduce JobHistory Server web ui 地址, 默认端口19888 -->
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>datanode1:19888</value>
    </property>
</configuration>

 不要忘记同步到其他集群 然后namenode -for mate 执行初始化

部署 Oozie

oozie根目录下解压hadooplibs

tar -zxf oozie-hadooplibs-4.0.0-cdh5.3.6.tar.gz -C ../

 在Oozie根目录下创建libext目录

mkdir libext/

 拷贝依赖Jar包

cp -ra hadooplibs/hadooplib-2.5.0-cdh5.3.6.oozie-4.0.0-cdh5.3.6/* libext/

上传Mysql驱动包到libext目录下

上传ext-2.2.zip拷贝到libext目录下

修改oozie-site.xml

属性:oozie.service.JPAService.jdbc.driver
属性值:com.mysql.jdbc.Driver
解释:JDBC的驱动

属性:oozie.service.JPAService.jdbc.url
属性值:jdbc:mysql://datanode1:3306/oozie
解释:oozie所需的数据库地址

属性:oozie.service.JPAService.jdbc.username
属性值:root
解释:数据库用户名

属性:oozie.service.JPAService.jdbc.password
属性值:123456
解释:数据库密码

属性:oozie.service.HadoopAccessorService.hadoop.configurations
属性值:*=/opt/module/cdh/hadoop-2.5.0-cdh5.3.6/etc/hadoop
解释:让Oozie引用Hadoop的配置文件

 在Mysql中创建Oozie的数据库

mysql -uroot -p123456
mysql> create database oozie;

 初始化Oozie

bin/oozie-setup.sh sharelib create -fs hdfs://datanode1:9000 -locallib oozie-sharelib-4.0.0-cdh5.3.6-yarn.tar.gz

 创建oozie.sql文件

bin/oozie-setup.sh db create -run -sqlfile oozie.sql

 打包项目,生成war包

bin/oozie-setup.sh prepare-war

 需要zip命令 最小化安装可能需要

Oozie服务

bin/oozied.sh start
//如需正常关闭Oozie服务,请使用:
 bin/oozied.sh stop

 Web页面

Oozie任务

调度shell

1.解压官方模板

tar -zxf oozie-examples.tar.gz

 2.创建工作目录

mkdir oozie-apps/

 3.拷贝任务模板

cp -r examples/apps/shell/ oozie-apps/

 4.shell脚本

#!/bin/bash
i=1
mkdir /home/hadoop/oozie-test1
cd /home/hadoop/oozie-test1
for(( i=1;i<=100;i++ ))
do
 d=$( date +%Y-%m-%d\ %H\:%M\:%S )
 echo "data:$d $i">>/home/hadoop/oozie-test1/logs.log
done

 5.job.properties

nameNode=hdfs://datanode1:9000
jobTracker=datanode2:8032
queueName=shell
examplesRoot=oozie-apps

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/shell
EXEC=p1.sh

 6.workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.4" name="shell-wf">
    <start to="shell-node"/>
    <action name="shell-node">
        <shell xmlns="uri:oozie:shell-action:0.2">
            <job-tracker>${jobTracker}</job-tracker>
            <name-node>${nameNode}</name-node>
            <configuration>
                <property>
                    <name>mapred.job.queue.name</name>
                    <value>${queueName}</value>
                </property>
            </configuration>
            <exec>${EXEC}</exec>
            <file>/user/hadoop/oozie-apps/shell/${EXEC}#${EXEC}</file>
            <capture-output/>
        </shell>
        <ok to="end"/>
        <error to="fail"/>
    </action>
    <decision name="check-output">
        <switch>
            <case to="end">
                ${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'}
            </case>
            <default to="fail-output"/>
        </switch>
    </decision>
    <kill name="fail">
        <message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
    </kill>
    <kill name="fail-output">
        <message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
    </kill>
    <end name="end"/>
</workflow-app>

 7.上传任务配置

/opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put  -f  oozie-apps/ /user/hadoop

 8.执行任务

bin/oozie job -oozie http://datanode1:11000/oozie -config oozie-apps/shell/job.properties -run

 9.杀死任务

bin/oozie job -oozie http://datanode1:11000/oozie -kill 0000004-170425105153692-oozie-z-W

 

调度逻辑shell

在原有的基础上进行适当修改

1.job.properties

nameNode=hdfs://datanode1:9000
jobTracker=datanode2:8032
queueName=shell
examplesRoot=oozie-apps

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/shell
EXEC1=p1.sh
EXEC2=p2.sh

 2.脚本 p1.sh

#!/bin/bash               
mkdir /home/hadoop/Oozie2_test_p1                 
cd /home/hadoop/Oozie2_test_p1
i=1
for(( i=1;i<=100;i++ ))
do
 d=$( date +%Y-%m-%d\ %H\:%M\:%S )
 echo "data:$d $i">>/home/hadoop/Oozie2_test_p1/Oozie2_p1.log
done

 2.脚本 p2.sh

#!/bin/bash
mkdir /home/hadoop/Oozie2_test_p1
cd /home/hadoop/Oozie2_test_p1
i=1
for(( i=1;i<=100;i++ ))
do
 d=$( date +%Y-%m-%d\ %H\:%M\:%S )
 echo "data:$d $i">>/home/hadoop/Oozie2_test_p1/Oozie2_p1.log
done

 3.workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.4" name="shell-wf">
    <start to="shell-node"/>
    <action name="shell-node">
        <shell xmlns="uri:oozie:shell-action:0.2">
            <job-tracker>${jobTracker}</job-tracker>
            <name-node>${nameNode}</name-node>
            <configuration>
                <property>
                    <name>mapred.job.queue.name</name>
                    <value>${queueName}</value>
                </property>
            </configuration>
            <exec>${EXEC1}</exec>
            <file>/user/hadoop/oozie-apps/shell/${EXEC1}#${EXEC1}</file>
            <capture-output/>
        </shell>
        <ok to="p2-shell-node"/>
        <error to="fail"/>
    </action>

    <action name="p2-shell-node">
        <shell xmlns="uri:oozie:shell-action:0.2">
            <job-tracker>${jobTracker}</job-tracker>
            <name-node>${nameNode}</name-node>
            <configuration>
                <property>
                    <name>mapred.job.queue.name</name>
                    <value>${queueName}</value>
                </property>
            </configuration>
            <exec>${EXEC2}</exec>
            <file>/user/hadoop/oozie-apps/shell/${EXEC2}#${EXEC2}</file>
            <!-- <argument>my_output=Hello Oozie</argument>-->
            <capture-output/>
        </shell>
        <ok to="end"/>
        <error to="fail"/>
    </action>
    
    <decision name="check-output">
        <switch>
            <case to="end">
                ${wf:actionData('shell-node')['my_output'] eq 'Hello Oozie'}
            </case>
            <default to="fail-output"/>
        </switch>
    </decision>
    <kill name="fail">
        <message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
    </kill>
    <kill name="fail-output">
        <message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
    </kill>
    <end name="end"/>
</workflow-app>

 调度MapReduce

前提:确定YARN可用

1.拷贝官方模板到oozie-apps

[hadoop@datanode1 lib]$ cp /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.3.6.jar ./

 2.配置job.properties

nameNode=hdfs://datanode1:9000
jobTracker=datanode2:8032
queueName=map-reduce
examplesRoot=oozie-apps

oozie.wf.application.path=${nameNode}/user/${user.name}/${examplesRoot}/map-reduce/workflow.xml
outputDir=/output

 3.workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.2" name="map-reduce-wf">
    <start to="mr-node"/>
    <action name="mr-node">
        <map-reduce>
            <job-tracker>${jobTracker}</job-tracker>
            <name-node>${nameNode}</name-node>
            <prepare>
                <delete path="/output"/>
            </prepare>
            <configuration>
                <property>
                    <name>mapred.job.queue.name</name>
                    <value>${queueName}</value>
                </property>
            <!-- 配置调度MR任务时,使用新的API -->
                <property>
                    <name>mapred.mapper.new-api</name>
                    <value>true</value>
                </property>

                <property>
                    <name>mapred.reducer.new-api</name>
                    <value>true</value>
                </property>
            <!-- 指定Job Key输出类型 -->
                <property>
                    <name>mapreduce.job.output.key.class</name>
                    <value>org.apache.hadoop.io.Text</value>
                </property>
            <!-- 指定Job Value输出类型 -->
                <property>
                    <name>mapreduce.job.output.value.class</name>
                    <value>org.apache.hadoop.io.IntWritable</value>
                </property>
            <!-- 指定Map类 -->
                <property>
                    <name>mapreduce.job.map.class</name>
                    <value>org.apache.hadoop.examples.WordCount$TokenizerMapper</value>
                </property>
             <!-- 指定Reduce类 -->
                <property>
                    <name>mapreduce.job.reduce.class</name>
                    <value>org.apache.hadoop.examples.WordCount$IntSumReducer</value>
                </property>
                <property>
                    <name>mapred.map.tasks</name>
                    <value>1</value>
                </property>
                <property>
                    <name>mapred.input.dir</name>
                    <value>/input</value>
                </property>
                <property>
                    <name>mapred.output.dir</name>
                    <value>/_output</value>
                </property>
            </configuration>
        </map-reduce>
        <ok to="end"/>
        <error to="fail"/>
    </action>
    <kill name="fail">
        <message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
    </kill>
    <end name="end"/>
</workflow-app>

 4.拷贝jar包

[hadoop@datanode1 lib]$ cp /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.3.6.jar ./

 5.上传任务配置

/opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put -f oozie-apps /user/hadoop/oozie-apps

 6.执行任务

[hadoop@datanode1 oozie-4.0.0-cdh5.3.6]$  bin/oozie job -oozie http://datanode1:11000/oozie -config oozie-apps/map-reduce/job.properties -run

 7.查看结果

[hadoop@datanode1 module]$ /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -cat /input/*.txt
19/01/10 19:13:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
I
Love
Hadoop
and
Sopark
I
Love
BigData
and
AI
[hadoop@datanode1 module]$ /opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -cat /_output/p*
19/01/10 19:13:08 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
AI      1
BigData 1
Hadoop  1
I       2
Love    2
Sopark  1
and     2

 调度定时任务/循环任务

前提:

##检查系统当前时区: 
 date -R
##注意这里,如果显示的时区不是+0800,你可以删除localtime文件夹后,再关联一个正确时区的链接过去,命令如下:
 rm -rf /etc/localtime
 ln -s /usr/share/zoneinfo/Asia/Shanghai /etc/localtime

 ntp配置

vim /etc/ntp.conf

 主机配置

从机配置

从节点同步时间

service ntpd restart
chkconfig ntpd on  # 开机启动
ntpdate -u datanode1
crontab -e
* */1 * * * /usr/sbin/ntpdate datanode1     #每一小时同步一次  注意 要用root创建

 1.配置oozie-site.xml文件

属性:oozie.processing.timezone
属性值:GMT+0800
解释:修改时区为东八区区时

 2.修改js框架代码

 vi /opt/module/cdh/oozie-4.0.0-cdh5.3.6/oozie-server/webapps/oozie/oozie-console.js
修改如下:
function getTimeZone() {
    Ext.state.Manager.setProvider(new Ext.state.CookieProvider());
    return Ext.state.Manager.get("TimezoneId","GMT+0800");
}

 3.重启oozie服务,并重启浏览器(一定要注意清除缓存)

bin/oozied.sh stop
bin/oozied.sh start

 4.拷贝官方模板配置定时任务

cp -r examples/apps/cron/ oozie-apps/

 5.修改job.properties

nameNode=hdfs://datanode1:9000
jobTracker=datanode2:8032
queueName=cronTask
examplesRoot=oozie-apps

oozie.coord.application.path=${nameNode}/user/${user.name}/${examplesRoot}/cron
start=2019-01-10T21:40+0800
end=2019-01-10T22:00+0800
workflowAppUri=${nameNode}/user/${user.name}/${examplesRoot}/cron

EXEC3=p3.sh

 6.修改coordinator.xml 注意${coord:minutes(5)}的5是最小值不能比5再小了

<coordinator-app name="cron-coord" frequency="${coord:minutes(5)}" start="${start}" end="${end}" timezone="GMT+0800"
                 xmlns="uri:oozie:coordinator:0.2">
        <action>
        <workflow>
            <app-path>${workflowAppUri}</app-path>
            <configuration>
                <property>
                    <name>jobTracker</name>
                    <value>${jobTracker}</value>
                </property>
                <property>
                    <name>nameNode</name>
                    <value>${nameNode}</value>
                </property>
                <property>
                    <name>queueName</name>
                    <value>${queueName}</value>
                </property>
            </configuration>
        </workflow>
    </action>
</coordinator-app>

 7.创建脚本

#!/bin/bash
d=$( date +%Y-%m-%d\ %H\:%M\:%S )
echo "data:$d $i">>/home/hadoop/Oozie3_p3.log

 8.修改

<workflow-app xmlns="uri:oozie:workflow:0.5" name="one-op-wf">
<start to="p3-shell-node"/>
  <action name="p3-shell-node">
      <shell xmlns="uri:oozie:shell-action:0.2">
          <job-tracker>${jobTracker}</job-tracker>
          <name-node>${nameNode}</name-node>
          <configuration>
              <property>
                  <name>mapred.job.queue.name</name>
                  <value>${queueName}</value>
              </property>
          </configuration>
          <exec>${EXEC3}</exec>
          <file>/user/hadoop/oozie-apps/cron/${EXEC3}#${EXEC3}</file>
          <!-- <argument>my_output=Hello Oozie</argument>-->
          <capture-output/>
      </shell>
      <ok to="end"/>
      <error to="fail"/>
  </action>
<kill name="fail">
    <message>Shell action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<kill name="fail-output">
    <message>Incorrect output, expected [Hello Oozie] but was [${wf:actionData('shell-node')['my_output']}]</message>
</kill>
<end name="end"/>
</workflow-app>

 9.提交配置

/opt/module/cdh/hadoop-2.5.0-cdh5.3.6/bin/hdfs dfs -put oozie-apps/cron/ /user/hadoop/oozie-apps

 10.提交任务

bin/oozie job -oozie http://datanode1:11000/oozie -config oozie-apps/cron/job.properties -run

 

 

posted on 2019-02-21 15:58  风-fmgao  阅读(273)  评论(0编辑  收藏  举报