网络编程实战

 

  “一段数据流从应用程序发送端,一直到应用程序接收端,总共经过了多少次拷贝?”

  先看发送端,当应用程序将数据送到发送缓冲区时,调用的是 send 或 write 方法,如果缓存中没有空间,系统调用就会失败或者阻塞。我们说,这个动作事实上是一次”显式拷贝“。而在这之后,数据将会按照 TCP/IP 的分层再次进行拷贝,这层的拷贝对我们来说就不是显式的了。

  接下来轮到 TCP 协议栈工作,创建 Packet 报文,并把报文发送到传输队列中(qdisc),传输队列是一个典型的 FIFO 队列,队列的最大值可以通过 ifocnfig 命令输出的 txqueuelen 来查看。通常情况下,这个值有几千报文大小。

  TX ring 在网络驱动和网卡之间,也是一个传输请求的队列。

  网卡作为物理设备工作在物理层,主要工作是把要发送的报文保存到内部的缓存中,并发送出去。

  接下来再看接收端,报文首先到达网卡,由网卡保存在自己的接收缓存中,接下来报文被发送至网络驱动和网卡之间的 RX ring,网络驱动从 RX ring 获取报文 ,然后把报文发送到上层。

  这里值得注意的是,网络驱动和上层之间没有缓存,因为网络驱动使用 Napi 进行数据传输。因此,可以认为上层直接从 RX ring 中读取报文。

  最后,报文的数据保存在套接字接收缓存中,应用程序从套接字接收缓存中读取数据。

  这就是数据流从应用程序发送端,一直到应用程序接收端的整个历程,你看懂了吗?

  上面的任何一个环节稍有积压,都会对程序性能产生影响。但好消息是,内核和网络设备供应商已经帮我们把一切都打点好了,我们看到和用到的,其实只是冰山上的一角而已。

TIME_WAIT 的作用

  TIME_WAIT 停留持续时间是固定的,是最长分节生命期 MSL(maximum segment lifetime)的两倍,一般称之为 2MSL。和大多数 BSD 派生的系统一样,Linux 系统里有一个硬编码的字段,名称为TCP_TIMEWAIT_LEN,其值为 60 秒。也就是说,Linux 系统停留在 TIME_WAIT 的时间为固定的 60 秒。

#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-       WAIT state, about 60 seconds   */

 

  TCP 在设计的时候,做了充分的容错性设计,比如,TCP 假设报文会出错,需要重传。在这里,如果图中主机 1 的 ACK 报文没有传输成功,那么主机 2 就会重新发送 FIN 报文。

  如果主机 1 没有维护 TIME_WAIT 状态,而直接进入 CLOSED 状态,它就失去了当前状态的上下文,只能回复一个 RST 操作,从而导致被动关闭方出现错误。

  现在主机 1 知道自己处于 TIME_WAIT 的状态,就可以在接收到 FIN 报文之后,重新发出一个 ACK 报文,使得主机 2 可以进入正常的 CLOSED 状态。

  第二个理由和连接“化身”和报文迷走有关系,为了让旧连接的重复分节在网络中自然消失。

  我们知道,在网络中,经常会发生报文经过一段时间才能到达目的地的情况,产生的原因是多种多样的,如路由器重启,链路突然出现故障等。如果迷走报文到达时,发现 TCP 连接四元组(源 IP,源端口,目的 IP,目的端口)所代表的连接不复存在,那么很简单,这个报文自然丢弃。

close 和 shutdown 的差别

  第一个差别:close 会关闭连接,并释放所有连接对应的资源,而 shutdown 并不会释放掉套接字和所有的资源。

  第二个差别:close 存在引用计数的概念,并不一定导致该套接字不可用;shutdown 则不管引用计数,直接使得该套接字不可用,如果有别的进程企图使用该套接字,将会受到影响。

  第三个差别:close 的引用计数导致不一定会发出 FIN 结束报文,而 shutdown 则总是会发出 FIN 结束报文,这在我们打算关闭连接通知对端的时候,是非常重要的。

 

TCP 是一种流式协议

  在发送端,当我们调用 send 函数完成数据“发送”以后,数据并没有被真正从网络上发送出去,只是从应用程序拷贝到了操作系统内核协议栈中,至于什么时候真正被发送,取决于发送窗口、拥塞窗口以及当前发送缓冲区的大小等条件。也就是说,我们不能假设每次 send 调用发送的数据,都会作为一个整体完整地被发送出去。

  如果我们考虑实际网络传输过程中的各种影响,假设发送端陆续调用 send 函数先后发送 network 和 program 报文

  接收端缓冲区保留了没有被取走的数据,随着应用程序不断从接收端缓冲区读出数据,接收端缓冲区就可以容纳更多新的数据。如果我们使用 recv 从接收端缓冲区读取数据,发送端缓冲区的数据是以字节流的方式存在的,无论发送端如何构造 TCP 分组,接收端最终受到的字节流总是像下面这样:

xxxxxxxxxxxxxxxxxnetworkprogramxxxxxxxxxxxx

  关于接收端字节流,有两点需要注意:

  第一,这里 netwrok 和 program 的顺序肯定是会保持的,也就是说,先调用 send 函数发送的字节,总在后调用 send 函数发送字节的前面,这个是由 TCP 严格保证的;

  第二,如果发送过程中有 TCP 分组丢失,但是其后续分组陆续到达,那么 TCP 协议栈会缓存后续分组,直到前面丢失的分组到达,最终,形成可以被应用程序读取的数据流。

  保证网络字节序一致,POSIX 标准提供了如下的转换函数:

uint16_t htons (uint16_t hostshort)
uint16_t ntohs (uint16_t netshort)
uint32_t htonl (uint32_t hostlong)
uint32_t ntohl (uint32_t netlong)

 

这里函数中的 n 代表的就是 network,h 代表的是 host,s 表示的是 short,l 表示的是 long,分别表示 16 位和 32 位的整数。

socket的行为

  发送端通过调用 send 函数之后,数据流并没有马上通过网络传输出去,而是存储在套接字的发送缓冲区中,由网络协议栈决定何时发送、如何发送。当对应的数据发送给接收端,接收端回应 ACK,存储在发送缓冲区的这部分数据就可以删除了,但是,发送端并无法获取对应数据流的 ACK 情况,也就是说,发送端没有办法判断对端的接收方是否已经接收发送的数据流,如果需要知道这部分信息,就必须在应用层自己添加处理逻辑,例如显式的报文确认机制。

  从接收端来说,也没有办法保证 ACK 过的数据部分可以被应用程序处理,因为数据需要接收端程序从接收缓冲区中拷贝,可能出现的状况是,已经 ACK 的数据保存在接收端缓冲区中,接收端处理程序突然崩溃了,这部分数据就没有办法被应用程序继续处理。

 

  TCP 连接建立之后,能感知 TCP 链路的方式是有限的,一种是以 read 为核心的读操作,另一种是以 write 为核心的写操作。

 

网络中断造成的对端无 FIN 包

  很多原因都会造成网络中断,在这种情况下,TCP 程序并不能及时感知到异常信息。除非网络中的其他设备,如路由器发出一条 ICMP 报文,说明目的网络或主机不可达,这个时候通过 read 或 write 调用就会返回 Unreachable 的错误。

  在没有 ICMP 报文的情况下,TCP 程序并不能理解感应到连接异常。如果程序是阻塞在 read 调用上,那么很不幸,程序无法从异常中恢复。这显然是非常不合理的,不过,我们可以通过给 read 操作设置超时来解决

  如果程序先调用了 write 操作发送了一段数据流,接下来阻塞在 read 调用上,结果会非常不同。Linux 系统的 TCP 协议栈会不断尝试将发送缓冲区的数据发送出去,大概在重传 12 次、合计时间约为 9 分钟之后,协议栈会标识该连接异常,这时,阻塞的 read 调用会返回一条 TIMEOUT 的错误信息。如果此时程序还执着地往这条连接写数据,写操作会立即失败,返回一个 SIGPIPE 信号给应用程序。

系统崩溃造成的对端无 FIN 包

  当系统突然崩溃,如断电时,网络连接上来不及发出任何东西。这里和通过系统调用杀死应用程序非常不同的是,没有任何 FIN 包被发送出来。

  这种情况和网络中断造成的结果非常类似,在没有 ICMP 报文的情况下,TCP 程序只能通过 read 和 write 调用得到网络连接异常的信息,超时错误是一个常见的结果。

  不过还有一种情况需要考虑,那就是系统在崩溃之后又重启,当重传的 TCP 分组到达重启后的系统,由于系统中没有该 TCP 分组对应的连接数据,系统会返回一个 RST 重置分节,TCP 程序通过 read 或 write 调用可以分别对 RST 进行错误处理。

  如果是阻塞的 read 调用,会立即返回一个错误,错误信息为连接重置(Connection Resest)。

  如果是一次 write 操作,也会立即失败,应用程序会被返回一个 SIGPIPE 信号。

对端有 FIN 包发出

  对端如果有 FIN 包发出,可能的场景是对端调用了 close 或 shutdown 显式地关闭了连接,也可能是对端应用程序崩溃,操作系统内核代为清理所发出的。从应用程序角度上看,无法区分是哪种情形。

  阻塞的 read 操作在完成正常接收的数据读取之后,FIN 包会通过返回一个 EOF 来完成通知,此时,read 调用返回值为 0。这里强调一点,收到 FIN 包之后 read 操作不会立即返回。你可以这样理解,收到 FIN 包相当于往接收缓冲区里放置了一个 EOF 符号,之前已经在接收缓冲区的有效数据不会受到影响。

TCP并不总是“可靠”的?

 

https://www.cnblogs.com/jiu0821/p/7229568.html

posted on 2020-05-04 16:16  flysong  阅读(237)  评论(0编辑  收藏  举报

导航