一步一步学习hadoop(八)
Map任务执行类的实现
Hadoop MapReduce框架将要处理数据切分成片,将每个分片让一个map任务去完成,每个map任务都将分片数据解析为键值对数据,调用Mapper类的map函数,将输入键值对转化为输出键值对,输出键值对的类型和输入键值对的类型可以没有任何关系。一个输入键值键值对可以得到0个或者多个输出键值对。
Hadoop中的MapReduce作业调用Mapper类来完成map任务,Mapper有两个版本,一个是老版的在org.apache.hadoop.mapred里,新版的在org.apache.hadoop.mapreduce里,新版的将原来的OutputCollector和Reporter整合为一个新的Context对象,使用起来更加简单,功能要更加强大。下面的例子实现新版的Mapper。一般来讲只需对Mapper类的map函数进行重载就可以满足大部分的需求了,有时需要在执行map任务前获取一些自定义的数据,比如传入的参数(如例子中的fieldSeparator),从DisturbuteCache中获取共享数据等特殊要求,需要实现setup函数,该函数在每次执行map任务前调用一次,同理,需要在执行完map任务后清理map任务,需要实现cleanup函数。
下面以一个类似linux的cut工具的map来讲解mapper类的构造过程。
该mapper将输入的键值对看成以分隔符分离的字段集,分隔符通过设置mapreduce.fieldsel.data.field.separator指定,默认为\t。输出的key/value对,以mapreduce.fieldsel.map.output.key.value.fields.spec指定,格式为2,3,5:6-9,12-表示输出键为字段2,3,5,输出值为字段6,7,8,9,12和大于12的所有字段。
import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; public class FieldSelectionMapper<K, V> extends Mapper<K, V, Text, Text> { private String mapOutputKeyValueSpec; private boolean ignoreInputKey; private String fieldSeparator = "\t"; private List<Integer> mapOutputKeyFieldList = new ArrayList<Integer>(); private List<Integer> mapOutputValueFieldList = new ArrayList<Integer>(); private int allMapValueFieldsFrom = -1; public void setup(Context context) throws IOException, InterruptedException { Configuration conf = context.getConfiguration(); this.fieldSeparator = conf.get(FieldSelectionHelper.DATA_FIELD_SEPERATOR, "\t"); this.mapOutputKeyValueSpec = conf.get(FieldSelectionHelper.MAP_OUTPUT_KEY_VALUE_SPEC, "0-:"); try { this.ignoreInputKey = TextInputFormat.class.getCanonicalName().equals( context.getInputFormatClass().getCanonicalName()); } catch (ClassNotFoundException e) { throw new IOException("Input format class not found", e); } allMapValueFieldsFrom = FieldSelectionHelper.parseOutputKeyValueSpec( mapOutputKeyValueSpec, mapOutputKeyFieldList, mapOutputValueFieldList); } public void map(K key, V val, Context context) throws IOException, InterruptedException { FieldSelectionHelper helper = new FieldSelectionHelper( FieldSelectionHelper.emptyText, FieldSelectionHelper.emptyText); helper.extractOutputKeyValue(key.toString(), val.toString(), fieldSeparator, mapOutputKeyFieldList, mapOutputValueFieldList, allMapValueFieldsFrom, ignoreInputKey, true); context.write(helper.getKey(), helper.getValue()); } }
其中引用的FieldSelectionHelper类的实现如下:
import java.util.List; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; import org.apache.hadoop.io.Text; public class FieldSelectionHelper { public static Text emptyText = new Text(""); public static final String DATA_FIELD_SEPERATOR = "mapreduce.fieldsel.data.field.separator"; public static final String MAP_OUTPUT_KEY_VALUE_SPEC = "mapreduce.fieldsel.map.output.key.value.fields.spec"; public static final String REDUCE_OUTPUT_KEY_VALUE_SPEC = "mapreduce.fieldsel.reduce.output.key.value.fields.spec"; private static int extractFields(String[] fieldListSpec, List<Integer> fieldList) { int allFieldsFrom = -1; int i = 0; int j = 0; int pos = -1; String fieldSpec = null; for (i = 0; i < fieldListSpec.length; i++) { fieldSpec = fieldListSpec[i]; if (fieldSpec.length() == 0) { continue; } pos = fieldSpec.indexOf('-'); if (pos < 0) { Integer fn = new Integer(fieldSpec); fieldList.add(fn); } else { String start = fieldSpec.substring(0, pos); String end = fieldSpec.substring(pos + 1); if (start.length() == 0) { start = "0"; } if (end.length() == 0) { allFieldsFrom = Integer.parseInt(start); continue; } int startPos = Integer.parseInt(start); int endPos = Integer.parseInt(end); for (j = startPos; j <= endPos; j++) { fieldList.add(j); } } } return allFieldsFrom; } private static String selectFields(String[] fields, List<Integer> fieldList, int allFieldsFrom, String separator) { String retv = null; int i = 0; StringBuffer sb = null; if (fieldList != null && fieldList.size() > 0) { if (sb == null) { sb = new StringBuffer(); } for (Integer index : fieldList) { if (index < fields.length) { sb.append(fields[index]); } sb.append(separator); } } if (allFieldsFrom >= 0) { if (sb == null) { sb = new StringBuffer(); } for (i = allFieldsFrom; i < fields.length; i++) { sb.append(fields[i]).append(separator); } } if (sb != null) { retv = sb.toString(); if (retv.length() > 0) { retv = retv.substring(0, retv.length() - 1); } } return retv; } public static int parseOutputKeyValueSpec(String keyValueSpec, List<Integer> keyFieldList, List<Integer> valueFieldList) { String[] keyValSpecs = keyValueSpec.split(":", -1); String[] keySpec = keyValSpecs[0].split(","); String[] valSpec = new String[0]; if (keyValSpecs.length > 1) { valSpec = keyValSpecs[1].split(","); } FieldSelectionHelper.extractFields(keySpec, keyFieldList); return FieldSelectionHelper.extractFields(valSpec, valueFieldList); } public static String specToString(String fieldSeparator, String keyValueSpec, int allValueFieldsFrom, List<Integer> keyFieldList, List<Integer> valueFieldList) { StringBuffer sb = new StringBuffer(); sb.append("fieldSeparator: ").append(fieldSeparator).append("\n"); sb.append("keyValueSpec: ").append(keyValueSpec).append("\n"); sb.append("allValueFieldsFrom: ").append(allValueFieldsFrom); sb.append("\n"); sb.append("keyFieldList.length: ").append(keyFieldList.size()); sb.append("\n"); for (Integer field : keyFieldList) { sb.append("\t").append(field).append("\n"); } sb.append("valueFieldList.length: ").append(valueFieldList.size()); sb.append("\n"); for (Integer field : valueFieldList) { sb.append("\t").append(field).append("\n"); } return sb.toString(); } private Text key = null; private Text value = null; public FieldSelectionHelper() { } public FieldSelectionHelper(Text key, Text val) { this.key = key; this.value = val; } public Text getKey() { return key; } public Text getValue() { return value; } public void extractOutputKeyValue(String key, String val, String fieldSep, List<Integer> keyFieldList, List<Integer> valFieldList, int allValueFieldsFrom, boolean ignoreKey, boolean isMap) { if (!ignoreKey) { val = key + val; } String[] fields = val.split(fieldSep); String newKey = selectFields(fields, keyFieldList, -1, fieldSep); String newVal = selectFields(fields, valFieldList, allValueFieldsFrom, fieldSep); if (isMap && newKey == null) { newKey = newVal; newVal = null; } if (newKey != null) { this.key = new Text(newKey); } if (newVal != null) { this.value = new Text(newVal); } } }