扩展卡尔曼滤波(MRPT)

博客转载自:http://www.cnblogs.com/21207-iHome/p/6133072.html

扩展卡尔曼滤波的状态方程和观测方程可以是非线性的。在一般情况下,无法确定过程噪声、测量噪声与方程的函数关系,因此可以简化为加性噪声:

EKF relies on a linearisation of the evolution and observation functions which are good approximations of the original functions if these functions are close to linear. The state-space formulation of EKF reads : 

Non-linear evolution and observation functions are handled within EKF by linearising these functions around some estimates of the state; for example for the evolution function is linearized around the previous estimate of the state x^kx^k:

The first step in applying EKF is to linearize the evolution function around the previous estimate of the state x^k1x^k−1 

扩展卡尔曼滤波流程如下图所示:

一个简单的例子:假设一架飞机以恒定水平速度飞行(高度不变),地面上有一个雷达可以发射电磁波测量飞机到雷达的距离rr。则有如下关系:

θ=arctan(yx)θ=arctan(yx)
r2=x2+y2r2=x2+y2

我们想知道某一时刻飞机的水平位置和垂直高度,以水平位置、水平速度、垂直高度作为状态变量:

 

则观测值与状态变量之间的关系为:,可以看出这是一个非线性的表达式。对于这个问题来说,观测方程的雅克比矩阵为:,即

 

状态转移方程的雅克比矩阵为:

得到上述矩阵后我们就可以设定初值和噪声,然后根据流程图中的步骤进行迭代计算。

MRPT中的卡尔曼滤波器

卡尔曼滤波算法都集中在 mrpt::bayes::CKalmanFilterCapable这个虚类中。 这个类中包括系统状态向量和系统协方差矩阵,以及根据选择的算法执行一个完整迭代的通用方法。在解决一个特定问题时需要从这个虚类派生一个新的类,并实现状态转移函数、观测函数以及它们的雅克比矩阵(采用EKF时)。内部的mrpt::bayes::CKalmanFilterCapable::runOneKalmanIteration()函数会依次调用用户改写的虚函数,每调用一次该函数执行一步预测+校正操作(runOneKalmanIteration():The main entry point, executes one complete step: prediction + update)

使用MRPT解决上述问题的C++代码如下:

#include <mrpt/bayes/CKalmanFilterCapable.h>
#include <mrpt/random.h>
#include <mrpt/system/os.h>
#include <mrpt/system/threads.h>

#include <iostream>

using namespace mrpt;
using namespace mrpt::bayes;
using namespace mrpt::math;
using namespace mrpt::utils;
using namespace mrpt::random;
using namespace std;


#define DELTA_TIME                    0.05f    // Time Step between Filter Steps

// 系统状态变量初始值(猜测值)
#define VEHICLE_INITIAL_X            10.0f
#define VEHICLE_INITIAL_Y            2000.0f
#define VEHICLE_INITIAL_V           200.0f

#define TRANSITION_MODEL_STD         1.0f    // 模型噪声
#define RANGE_SENSOR_NOISE_STD         5.0f    // 传感器噪声


/* --------------------------------------------------------------------------------------------
        Virtual base for Kalman Filter (EKF,IEKF,UKF) implementations.
template<size_t VEH_SIZE, size_t OBS_SIZE, size_t FEAT_SIZE, size_t ACT_SIZE, typename KFTYPE>
class mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >

The meaning of the template parameters is:
VEH_SIZE: The dimension of the "vehicle state"(系统状态变量数目)
OBS_SIZE: The dimension of each observation (eg, 2 for pixel coordinates, 3 for 3D coordinates,etc).(观测量维数)
FEAT_SIZE: The dimension of the features in the system state (the "map"), or 0 if not applicable (the default if not implemented).
ACT_SIZE: The dimension of each "action" u_k (or 0 if not applicable).(控制量的维数)
KFTYPE: The numeric type of the matrices (default: double)

This base class stores the state vector and covariance matrix of the system. It has virtual methods 
that must be completed by derived classes to address a given filtering problem.
 ---------------------------------------------------------------------------------------------- */
// Implementation of the system models as a EKF
class CRange: public CKalmanFilterCapable<3, 1, 0, 0>
{
public:
    CRange( );
    virtual ~CRange();

    void  Process( double DeltaTime, double observationRange);

    void getState( KFVector &xkk, KFMatrix &pkk)
    { 
        xkk = m_xkk;  //The system state vector.
        pkk = m_pkk;  //The system full covariance matrix
    }


protected:
    float m_obsRange;    // 观测值
    float m_deltaTime;    // Time Step between Filter Steps

    // return the action vector u
    void OnGetAction( KFArray_ACT &out_u ) const;  

    // Implements the transition model 
    void OnTransitionModel(const KFArray_ACT &in_u,KFArray_VEH &inout_x,bool &out_skipPrediction) const;

    // Implements the transition Jacobian
    void OnTransitionJacobian(KFMatrix_VxV  &out_F ) const;

    // Implements the transition noise covariance
    void OnTransitionNoise(KFMatrix_VxV &out_Q ) const;

    // Return the observation NOISE covariance matrix, that is, the model of the Gaussian additive noise of the sensor.
    void OnGetObservationNoise(KFMatrix_OxO &out_R) const;

    /** This is called between the KF prediction step and the update step
    *  This method will be called just once for each complete KF iteration.
    * \note It is assumed that the observations are independent, i.e. there are NO cross-covariances between them.
    */
    void OnGetObservationsAndDataAssociation(
        vector_KFArray_OBS            &out_z,
        mrpt::vector_int            &out_data_association,
        const vector_KFArray_OBS    &in_all_predictions,
        const KFMatrix              &in_S,
        const vector_size_t         &in_lm_indices_in_S,
        const KFMatrix_OxO          &in_R
        );

    // Implements the observation prediction 
    void OnObservationModel(const vector_size_t &idx_landmarks_to_predict,vector_KFArray_OBS  &out_predictions) const;

    // Implements the observation Jacobians
    void OnObservationJacobians(const size_t &idx_landmark_to_predict,KFMatrix_OxV &Hx,KFMatrix_OxF &Hy) const;
};


CRange::CRange()
{
    KF_options.method = kfEKFNaive;

    // 状态变量初始值 State: (x,vx,y)
    m_xkk.resize(3);    //对于动态矩阵可以通过resize()函数来动态修改矩阵的大小
    m_xkk[0]= VEHICLE_INITIAL_X;
    m_xkk[1]= VEHICLE_INITIAL_V;
    m_xkk[2]= VEHICLE_INITIAL_Y;

    // Initial cov:  Large uncertainty
    m_pkk.setSize(3,3); 
    m_pkk.unit();
    m_pkk = 50 * m_pkk;
}


CRange::~CRange()
{

}


void  CRange::Process( double DeltaTime, double observationRange)
{
    m_deltaTime = (float)DeltaTime;
    m_obsRange  = (float)observationRange;

    runOneKalmanIteration(); // executes one complete step: prediction + update
}


// Must return the action vector u.
// param out_u: The action vector which will be passed to OnTransitionModel
void CRange::OnGetAction( KFArray_ACT &out_u ) const
{

}


/** Implements the transition model(Project the state ahead)
 param in_u :    The vector returned by OnGetAction.
 param inout_x:  prediction value
 param out_skip: Set this to true if for some reason you want to skip the prediction step. Default:false
  */
void CRange::OnTransitionModel(const KFArray_ACT &in_u, KFArray_VEH &inout_x, bool &out_skipPrediction) const
{
    // The constant-velocities model is implemented simply as:
    inout_x[0] +=  m_deltaTime * inout_x[1];
    inout_x[1] = inout_x[1];
    inout_x[2] = inout_x[2];
}


/** Implements the transition Jacobian 
param out_F Must return the Jacobian.
The returned matrix must be N*N with N being the size of the whole state vector.
  */
void CRange::OnTransitionJacobian(KFMatrix_VxV  &F) const
{
    F.unit();
    F(0,1) = m_deltaTime;
}


/** Implements the transition noise covariance 
 param out_Q Must return the covariance matrix.
 The returned matrix must be of the same size than the jacobian from OnTransitionJacobian
  */
void CRange::OnTransitionNoise(KFMatrix_VxV &Q) const
{
    Q.unit();
    Q *= square(TRANSITION_MODEL_STD);
}


/** Return the observation NOISE covariance matrix, that is, the model of the Gaussian additive noise of the sensor.
param out_R : The noise covariance matrix. It might be non diagonal, but it'll usually be.
*/
void CRange::OnGetObservationNoise(KFMatrix_OxO &R) const
{
    R.unit();
    R *= square(RANGE_SENSOR_NOISE_STD);
}


// This is called between the KF prediction step and the update step
void CRange::OnGetObservationsAndDataAssociation(
    vector_KFArray_OBS            &out_z,
    mrpt::vector_int            &out_data_association,
    const vector_KFArray_OBS    &in_all_predictions,
    const KFMatrix              &in_S,
    const vector_size_t         &in_lm_indices_in_S,
    const KFMatrix_OxO          &in_R
    )
{
    //out_z: N vectors, N being the number of "observations"
    out_z.resize(1);
    out_z[0][0] = m_obsRange;
}


/** Implements the observation prediction 
param idx_landmark_to_predict: The indices of the landmarks in the map whose predictions are expected as output. For non SLAM-like problems, this input value is undefined and the application should just generate one observation for the given problem.
param out_predictions: The predicted observations.
  */
void CRange::OnObservationModel(const vector_size_t &idx_landmarks_to_predict,vector_KFArray_OBS &out_predictions) const
{
    // idx_landmarks_to_predict is ignored in NON-SLAM problems
    out_predictions.resize(1);
    out_predictions[0][0] = sqrt( square(m_xkk[0]) + square(m_xkk[2]) );
}


// Implements the observation Jacobians 
void CRange::OnObservationJacobians(const size_t &idx_landmark_to_predict,KFMatrix_OxV &Hx,KFMatrix_OxF &Hy) const
{
    Hx.zeros();
    Hx(0,0) = m_xkk[0] / sqrt(square(m_xkk[0])+square(m_xkk[2]));
    Hx(0,2) = m_xkk[2] / sqrt(square(m_xkk[0])+square(m_xkk[2]));
}




int main ()
{
    // Create class instance
    CRange     EKF;
    EKF.KF_options.method = kfEKFNaive; //select the KF algorithm

    // Initiate simulation
    float x=0, y=1000, v=100; //状态变量真实值
    float t=0;

    while (!mrpt::system::os::kbhit())
    {    
        // Simulate noisy observation:
        x += v * DELTA_TIME;
        float realRange = sqrt(square(x)+square(y));
    
        // double mrpt::random::CRandomGenerator::drawGaussian1D_normalized(double * likelihood = NULL)    
        // Generate a normalized (mean=0, std=1) normally distributed sample
        float obsRange = max(0.0, realRange + RANGE_SENSOR_NOISE_STD * randomGenerator.drawGaussian1D_normalized() );

        printf("Real/Simulated range: %.03f / %.03f \n", realRange, obsRange );


        // Process with EKF
        EKF.Process(DELTA_TIME, obsRange);


        // Show EKF state:
        CRange::KFVector EKF_xkk;
        CRange::KFMatrix EKF_pkk;
        EKF.getState( EKF_xkk, EKF_pkk );

        printf("Real state: x:%.03f  v=%.03f  y=%.03f \n",x,v,y);
        cout << "EKF estimation:" <<endl<< EKF_xkk << endl;
        cout <<"-------------------------------------------"<<endl;

        // Delay(An OS-independent method for sending the current thread to "sleep" for a given period of time)
        mrpt::system::sleep((int)(DELTA_TIME*1000));
        t += DELTA_TIME;
    }


    return 0;
}

运行一段时间后结果如下图所示,可以看出状态变量基本收敛到真实值(由于传感器和模型噪声不可消除,因此只能是对真实状态的最优估计)。

参考:

Kalman滤波器从原理到实现

Eigen: C++开源矩阵计算工具——Eigen的简单用法

KFilter - Free C++ Extended Kalman Filter Library

How to Use this Extended Kalman Filter Library?

http://www.mrpt.org/Kalman_Filters

http://reference.mrpt.org/devel/classmrpt_1_1bayes_1_1_c_kalman_filter_capable.html

https://github.com/MRPT/mrpt/blob/master/samples/bayesianTracking/test.cpp

 

posted @ 2018-04-10 00:34  采男孩的小蘑菇  阅读(1496)  评论(0编辑  收藏  举报