java.util.concurrent包API学习笔记
一.newFixedThreadPool
newFixedThreadPool:创建一个固定大小的线程池。
shutdown():用于关闭启动线程,如果不调用该语句,jvm不会关闭。
awaitTermination():用于等待子线程结束,再继续执行下面的代码。该例中我设置一直等着子线程结束。
实例:Java主线程启动N个子线程,等子线程都结束后再执行主线程
package com.bijian.study; import java.io.IOException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.TimeUnit; public class NewFixedThreadPoolTest { public static void main(String[] args) throws IOException, InterruptedException { ExecutorService service = Executors.newFixedThreadPool(2); for (int i = 0; i < 4; i++) { Runnable run = new Runnable() { @Override public void run() { System.out.println("thread start"); } }; service.execute(run); } service.shutdown(); service.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS); System.out.println("all thread complete"); } }
运行结果:
thread start
thread start
thread start
thread start
all thread complete
二.newScheduledThreadPool
这个先不说,我喜欢用spring quartz.
三.CyclicBarrier
假设有只有的一个场景:每个线程代表一个跑步运动员,当运动员都准备好后,才一起出发,只要有一个人没有准备好,大家都等待。
package com.bijian.study; import java.io.IOException; import java.util.Random; import java.util.concurrent.BrokenBarrierException; import java.util.concurrent.CyclicBarrier; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; class Runner implements Runnable { private CyclicBarrier barrier; private String name; public Runner(CyclicBarrier barrier, String name) { super(); this.barrier = barrier; this.name = name; } @Override public void run() { try { Thread.sleep(1000 * (new Random()).nextInt(8)); System.out.println(name + " 准备OK."); barrier.await(); } catch (InterruptedException e) { e.printStackTrace(); } catch (BrokenBarrierException e) { e.printStackTrace(); } System.out.println(name + " Go!!"); } } public class Race { public static void main(String[] args) throws IOException, InterruptedException { CyclicBarrier barrier = new CyclicBarrier(3); ExecutorService executor = Executors.newFixedThreadPool(3); executor.submit(new Thread(new Runner(barrier, "zhangsan"))); executor.submit(new Thread(new Runner(barrier, "lisi"))); executor.submit(new Thread(new Runner(barrier, "wangwu"))); executor.shutdown(); } }
运行结果:
wangwu 准备OK. zhangsan 准备OK. lisi 准备OK. lisi Go!! wangwu Go!! zhangsan Go!!
四.ThreadPoolExecutor
newFixedThreadPool生成一个固定的线程池,顾名思义,线程池的线程是不会释放的,即使它是Idle。这就会产生性能问题,比如如果线程池的大小为200,当全部使用完毕后,所有的线程会继续留在池中,相应的内存和线程切换(while(true)+sleep循环)都会增加。如果要避免这个问题,就必须直接使用ThreadPoolExecutor()来构造。可以像Tomcat的线程池一样设置“最大线程数”、“最小线程数”和“空闲线程keepAlive的时间”。
ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler)
corePoolSize:池中所保存的线程数,包括空闲线程(非最大同时干活的线程数)。如果池中线程数多于 corePoolSize,则这些多出的线程在空闲时间超过 keepAliveTime 时将会终止。
maximumPoolSize:线程池中最大线程数
keepAliveTime:线程空闲回收的时间
unit:keepAliveTime的单位
workQueue:保存任务的队列,可以如下选择:
a.无界队列: new LinkedBlockingQueue<Runnable>();
b.有界队列: new ArrayBlockingQueue<Runnable>(8);你不想让客户端无限的请求吃光你的CPU和内存吧,那就用有界队列
handler:当提交任务数大于队列size会抛出RejectedExecutionException,可选的值为:
a.ThreadPoolExecutor.CallerRunsPolicy 等待队列空闲
b.ThreadPoolExecutor.DiscardPolicy:丢弃要插入队列的任务
c.ThreadPoolExecutor.DiscardOldestPolicy:删除队头的任务
关于corePoolSize和maximumPoolSize,Java官方Docs写道:
当新任务在方法 execute(java.lang.Runnable) 中提交时,如果运行的线程少于 corePoolSize,则创建新线程来处理请求(即使存在空闲线程)。
如果运行的线程多于 corePoolSize 而少于 maximumPoolSize,则仅当队列(queue)满时才创建新线程。
如果设置的 corePoolSize 和 maximumPoolSize 相同,则创建了固定大小的线程池。
如果将 maximumPoolSize 设置为基本的无界值(如 Integer.MAX_VALUE),则允许池适应任意数量的并发任务。
package com.bijian.study; import java.util.concurrent.BlockingQueue; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; /** * BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>();容量大小默认为Integer.MAX_VALUE,也就是说这个队列(queue)不会满,导致线程池永远达不到maximumPoolSize大小 */ public class ThreadPoolExecutorTest { public static void main(String[] args) { BlockingQueue<Runnable> queue = new LinkedBlockingQueue<Runnable>(3); ThreadPoolExecutor executor = new ThreadPoolExecutor(3, 6, 1, TimeUnit.DAYS, queue); for (int i = 0; i < 20; i++) { final int index = i; executor.execute(new Runnable() { public void run() { try { Thread.sleep(4000); } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + String.format("thread %d finished", index)); } }); } executor.shutdown(); } }
运行结果:
Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task com.bijian.study.ThreadPoolExecutorTest$1@27385846 rejected from java.util.concurrent.ThreadPoolExecutor@5fb7a531[Running, pool size = 6, active threads = 6, queued tasks = 3, completed tasks = 0] at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.reject(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.execute(Unknown Source) at com.bijian.study.ThreadPoolExecutorTest.main(ThreadPoolExecutorTest.java:20) pool-1-thread-4thread 6 finished pool-1-thread-1thread 0 finished pool-1-thread-2thread 1 finished pool-1-thread-6thread 8 finished pool-1-thread-5thread 7 finished pool-1-thread-3thread 2 finished pool-1-thread-1thread 4 finished pool-1-thread-2thread 5 finished pool-1-thread-4thread 3 finished
五.原子变量(Atomic )
并发库中的BlockingQueue是一个比较好玩的类,顾名思义,就是阻塞队列。该类主要提供了两个方法put()和take(),前者将一个对象放到队列中,如果队列已经满了,就等待直到有空闲节点;后者从head取一个对象,如果没有对象,就等待直到有可取的对象。
下面的例子比较简单,一个读线程,用于将要处理的文件对象添加到阻塞队列中,另外四个写线程用于取出文件对象,为了模拟写操作耗时长的特点,特让线程睡眠一段随机长度的时间。另外,该Demo也使用到了线程池和原子整型(AtomicInteger),AtomicInteger可以在并发情况下达到原子化更新,避免使用了synchronized,而且性能非常高。由于阻塞队列的put和take操作会阻塞,为了使线程退出,在队列中添加了一个“标识”,算法中也叫“哨兵”,当发现这个哨兵后,写线程就退出。
package com.bijian.study; import java.io.File; import java.io.FileFilter; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.atomic.AtomicInteger; public class AtomicTest { static long randomTime() { return (long) (Math.random() * 1000); } public static void main(String[] args) { // 能容纳100个文件 final BlockingQueue<File> queue = new LinkedBlockingQueue<File>(100); // 线程池 final ExecutorService exec = Executors.newFixedThreadPool(5); final File root = new File("D:\\dist\\blank"); // 完成标志 final File exitFile = new File(""); // 读个数 final AtomicInteger rc = new AtomicInteger(); // 写个数 final AtomicInteger wc = new AtomicInteger(); // 读线程 Runnable read = new Runnable() { public void run() { scanFile(root); scanFile(exitFile); } public void scanFile(File file) { if (file.isDirectory()) { File[] files = file.listFiles(new FileFilter() { public boolean accept(File pathname) { return pathname.isDirectory() || pathname.getPath().endsWith(".log"); } }); for (File one : files) scanFile(one); } else { try { int index = rc.incrementAndGet(); System.out.println("Read0: " + index + " " + file.getPath()); queue.put(file); } catch (InterruptedException e) { } } } }; exec.submit(read); // 四个写线程 for (int index = 0; index < 4; index++) { // write thread final int num = index; Runnable write = new Runnable() { String threadName = "Write" + num; public void run() { while (true) { try { Thread.sleep(randomTime()); int index = wc.incrementAndGet(); File file = queue.take(); // 队列已经无对象 if (file == exitFile) { // 再次添加"标志",以让其他线程正常退出 queue.put(exitFile); break; } System.out.println(threadName + ": " + index + " " + file.getPath()); } catch (InterruptedException e) { } } } }; exec.submit(write); } exec.shutdown(); } }
运行结果:
Read0: 1 D:\dist\blank Read0: 2 Write3: 1 D:\dist\blank
六.CountDownLatch
从名字可以看出,CountDownLatch是一个倒数计数的锁,当倒数到0时触发事件,也就是开锁,其他人就可以进入了。在一些应用场合中,需要等待某个条件达到要求后才能做后面的事情;同时当线程都完成后也会触发事件,以便进行后面的操作。
CountDownLatch最重要的方法是countDown()和await(),前者主要是倒数一次,后者是等待倒数到0,如果没有到达0,就只有阻塞等待了。
一个CountDouwnLatch实例是不能重复使用的,也就是说它是一次性的,锁一经被打开就不能再关闭使用了,如果想重复使用,请考虑使用CyclicBarrier。
下面的例子简单的说明了CountDownLatch的使用方法,模拟了100米赛跑,10名选手已经准备就绪,只等裁判一声令下。当所有人都到达终点时,比赛结束。
package com.bijian.study; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class CountDownLatchTest { public static void main(String[] args) throws InterruptedException { // 开始的倒数锁 final CountDownLatch begin = new CountDownLatch(1); // 结束的倒数锁 final CountDownLatch end = new CountDownLatch(10); // 十名选手 final ExecutorService exec = Executors.newFixedThreadPool(10); for (int index = 0; index < 10; index++) { final int NO = index + 1; Runnable run = new Runnable() { public void run() { try { begin.await(); Thread.sleep((long) (Math.random() * 10000)); System.out.println("No." + NO + " arrived"); } catch (InterruptedException e) { } finally { end.countDown(); } } }; exec.submit(run); } System.out.println("Game Start"); begin.countDown(); end.await(); System.out.println("Game Over"); exec.shutdown(); } }
运行结果:
Game Start No.1 arrived No.3 arrived No.9 arrived No.5 arrived No.2 arrived No.4 arrived No.6 arrived No.8 arrived No.10 arrived No.7 arrived Game Over
七.使用Callable和Future实现线程等待和多线程返回值
假设在main线程启动一个线程,然后main线程需要等待子线程结束后,再继续下面的操作,我们会通过join方法阻塞main线程,代码如下:
Runnable runnable = ...; Thread t = new Thread(runnable); t.start(); t.join(); ......
通过JDK1.5线程池管理的线程可以使用Callable和Future实现(join()方法无法应用到在线程池线程)
例一:
package com.bijian.study; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; public class CallableFutureTest { public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("start main thread"); final ExecutorService exec = Executors.newFixedThreadPool(5); Callable<String> call = new Callable<String>() { public String call() throws Exception { System.out.println(" start new thread."); Thread.sleep(1000 * 5); System.out.println(" end new thread."); return "some value."; } }; Future<String> task = exec.submit(call); Thread.sleep(1000 * 2); task.get(); // 阻塞,并待子线程结束, exec.shutdown(); exec.awaitTermination(Long.MAX_VALUE, TimeUnit.DAYS); System.out.println("end main thread"); } }
运行结果:
start main thread start new thread. end new thread. end main thread
例二:
package com.bijian.study; import java.util.ArrayList; import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; /** * 多线程返回值测试 */ public class CallableFutureTest02 { public static void main(String[] args) throws InterruptedException, ExecutionException { System.out.println("start main thread"); int threadCount = 5; final ExecutorService exec = Executors.newFixedThreadPool(threadCount); List<Future<Integer>> tasks = new ArrayList<Future<Integer>>(); for (int i = 0; i < threadCount; i++) { Callable<Integer> call = new Callable<Integer>() { public Integer call() throws Exception { Thread.sleep(1000); return 1; } }; tasks.add(exec.submit(call)); } long total = 0; for (Future<Integer> future : tasks) { total += future.get(); } exec.shutdown(); System.out.println("total: " + total); System.out.println("end main thread"); } }
运行结果:
start main thread total: 5 end main thread
八.CompletionService
这个东西的使用上很类似上面的example,不同的是,它会首先取完成任务的线程。下面的参考文章里,专门提到这个,大家有兴趣可以看下,例子:
package com.bijian.study; import java.util.concurrent.Callable; import java.util.concurrent.CompletionService; import java.util.concurrent.ExecutionException; import java.util.concurrent.ExecutorCompletionService; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; public class CompletionServiceTest { public static void main(String[] args) throws InterruptedException, ExecutionException { ExecutorService exec = Executors.newFixedThreadPool(10); CompletionService<String> serv = new ExecutorCompletionService<String>(exec); for (int index = 0; index < 5; index++) { final int NO = index; Callable<String> downImg = new Callable<String>() { public String call() throws Exception { Thread.sleep((long) (Math.random() * 10000)); return "Downloaded Image " + NO; } }; serv.submit(downImg); } Thread.sleep(1000 * 2); System.out.println("Show web content"); for (int index = 0; index < 5; index++) { Future<String> task = serv.take(); String img = task.get(); System.out.println(img); } System.out.println("End"); // 关闭线程池 exec.shutdown(); } }
运行结果:
Show web content Downloaded Image 2 Downloaded Image 0 Downloaded Image 1 Downloaded Image 3 Downloaded Image 4 End
九.Semaphore信号量
拿到信号量的线程可以进入代码,否则就等待。通过acquire()和release()获取和释放访问许可。下面的例子只允许5个线程同时进入执行acquire()和release()之间的代码。
package com.bijian.study; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; public class SemaphoreTest { public static void main(String[] args) { // 线程池 ExecutorService exec = Executors.newCachedThreadPool(); // 只能5个线程同时访问 final Semaphore semp = new Semaphore(5); // 模拟20个客户端访问 for (int index = 0; index < 20; index++) { final int NO = index; Runnable run = new Runnable() { public void run() { try { // 获取许可 semp.acquire(); System.out.println("Accessing: " + NO); Thread.sleep((long) (Math.random() * 10000)); // 访问完后,释放 semp.release(); } catch (InterruptedException e) { } } }; exec.execute(run); } // 退出线程池 exec.shutdown(); } }
运行结果:
Accessing: 0 Accessing: 3 Accessing: 2 Accessing: 1 Accessing: 4 Accessing: 5 Accessing: 7 Accessing: 6 Accessing: 8 Accessing: 9 Accessing: 10 Accessing: 11 Accessing: 12 Accessing: 13 Accessing: 14 Accessing: 15 Accessing: 16 Accessing: 17 Accessing: 18 Accessing: 19
PS:进一步学习链接
jdk1.5中的线程池使用简介:http://www.java3z.com/cwbwebhome/article/article2/2875.html
CAS原理:http://www.blogjava.net/syniii/archive/2010/11/18/338387.html?opt=admin
jdk1.5中java.util.concurrent包编写多线程:http://hi.baidu.com/luotoo/blog/item/b895c3c2d650591e0ef47731.html
ExecutorSerive vs CompletionService:http://www.coderanch.com/t/491704/threads/java/ExecutorSerive-vs-CompletionService
posted on 2017-06-08 22:58 bijian1013 阅读(300) 评论(2) 编辑 收藏 举报
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本
· C#/.NET/.NET Core优秀项目和框架2025年2月简报
· 一文读懂知识蒸馏
· Manus爆火,是硬核还是营销?
· 终于写完轮子一部分:tcp代理 了,记录一下