1081. Binary Lexicographic Sequence(找规律)

1081. Binary Lexicographic Sequence

http://acm.timus.ru/problem.aspx?space=1&num=1081

Time limit: 0.5 second
Memory limit: 64 MB

Consider all the sequences with length (0 < N < 44), containing only the elements 0 and 1, and no two ones are adjacent (110 is not a valid sequence of length 3, 0101 is a valid sequence of length 4). Write a program which finds the sequence, which is on K-th place (0 < K < 109) in the lexicographically sorted in ascending order collection of the described sequences.

Input

The first line of input contains two positive integers N and K.

Output

Write the found sequence or −1 if the number K is larger then the number of valid sequences.

Sample

input output
3 1
000

 

先来枚举几个情况

N为1时:

按字典序就有字符串:

0

1

N为2时:

按字典序就有字符串:

00

01

10

N为3时:

按字典序就有字符串:

000

001

010

101

N为4时:

按字典序就有字符串:

0000

0001

0010

0100

0101

1000

1001

1010

令p(N)为长度为N的字符串数,则前p(N-1)个即为N-1长度的字符串序列中的每一个字符串前加上一个0,而后p(N)-p(N-1)即为N-2长度的字符串序列中的每一个字符串前加上10。因此得到一个k后就可以通过不断向前回溯得到字符串

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<vector>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>

using namespace std;
int rule[45];
void init()
{
	rule[1]=2;rule[2]=3;
	for(int i=3;i<=44;i++)
	{
		rule[i]=rule[i-1]+rule[i-2];
	}
} 
int arr[45];
int main()
{
	init();int n,k;
	while(cin>>n>>k)
	{
		memset(arr,0,sizeof(arr));
		
		if(k>rule[n])
		{
			cout<<"-1"<<endl;
			continue;
		}
		int up=lower_bound(rule,rule+45,k)-rule;
		int temp=k;
		//cout<<up<<endl;
		while(up>2)
		{
			arr[up]=1;
			temp=temp-rule[up-1];
			up=lower_bound(rule,rule+45,temp)-rule;
			//cout<<temp<<endl;
		}
		if(up<=2)
		{
			if(temp==2) arr[1]=1;
			if(temp==3) arr[2]=1;
		}
		for(int i=n;i>=1;--i)
		{
			printf("%d",arr[i]);
		}	
		printf("\n");
	}
	return 0;
}

 

posted @ 2018-07-26 22:51  Fly_White  阅读(149)  评论(0编辑  收藏  举报