课堂测试3第一阶段数据清洗

Result文件数据说明:

Ip:106.39.41.166,(城市)

Date:10/Nov/2016:00:01:02 +0800,(日期)

Day:10,(天数)

Traffic: 54 ,(流量)

Type: video,(类型:视频video或文章article)

Id: 8701(视频或者文章的id)

测试要求:

1、 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。

两阶段数据清洗:

(1)第一阶段:把需要的信息从原始日志中提取出来

ip:    199.30.25.88

time:  10/Nov/2016:00:01:03 +0800

traffic:  62

文章: article/11325

视频: video/3235

(2)第二阶段:根据提取出来的信息做精细化操作

ip--->城市 city(IP)

date--> time:2016-11-10 00:01:03

day: 10

traffic:62

type:article/video

id:11325

(3)hive数据库表结构:

create table data(  ip string,  time string , day string, traffic bigint,

type string, id   string )

2、数据处理:

·统计最受欢迎的视频/文章的Top10访问次数 (video/article)

·按照地市统计最受欢迎的Top10课程 (ip)

·按照流量统计最受欢迎的Top10课程 (traffic)

3、数据可视化:将统计结果导入MySql数据库中,通过图形化展示的方式展现出来。

(本次只完成1.数据清洗)

 

 1 package hiveUDF;
 2 import java.lang.String;
 3 import java.text.SimpleDateFormat;
 4 import java.util.Date;
 5 import java.util.Locale;
 6 import java.io.IOException;
 7 import org.apache.hadoop.conf.Configuration;
 8 import org.apache.hadoop.fs.Path;
 9 import org.apache.hadoop.io.LongWritable;
10 import org.apache.hadoop.io.Text;
11 import org.apache.hadoop.mapreduce.Job;
12 import org.apache.hadoop.mapreduce.Mapper;
13 import org.apache.hadoop.mapreduce.Reducer;
14 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
16 public class test1 {
17     
18      public static final SimpleDateFormat FORMAT = new SimpleDateFormat("d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH); //原时间格式
19      public static final SimpleDateFormat dateformat1 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");//现时间格式
20    private static Date parseDateFormat(String string) {         //转换时间格式
21         Date parse = null;
22         try {
23             parse = FORMAT.parse(string);
24         } catch (Exception e) {
25             e.printStackTrace();
26         }
27         return parse;
28     }
29     public static class MyMapper extends Mapper<LongWritable, Text, Text/*map对应键类型*/, Text/*map对应值类型*/>
30     {
31          protected void map(LongWritable key, Text value,Context context)throws IOException, InterruptedException
32          {
33               String[] strNlist = value.toString().split(",");//如何分隔
34               //LongWritable,IntWritable,Text等
35               Date date = parseDateFormat(strNlist[1]);
36               context.write(new Text(strNlist[0])/*map对应键类型*/,new Text(dateformat1.format(date)+","+strNlist[2]+","+strNlist[3]+","+strNlist[4]+","+strNlist[5])/*map对应值类型*/);
37          }
38     }
39     public static class MyReducer extends Reducer<Text/*map对应键类型*/, Text/*map对应值类型*/, Text/*reduce对应键类型*/, Text/*reduce对应值类型*/>
40     {
41 //      static No1Info info=new No1Info();
42          protected void reduce(Text key, Iterable<Text/*map对应值类型*/> values,Context context)throws IOException, InterruptedException
43          {
44              for (/*map对应值类型*/Text init : values)
45              {
46 //               String[] strNlist = init.toString().split(",");
47 //                 dao.add("data", strNlist);
48                  context.write( key/*reduce对应键类型*/, new Text(init)/*reduce对应值类型*/);
49              }
50          }
51     }
52      
53     public static void main(String[] args) throws Exception {
54         Configuration conf = new Configuration();
55          
56         //将命令行中的参数自动设置到变量conf中
57 //      String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
58 //      if (otherArgs.length != 2) {
59 //          System.err.println("Usage: wordcount <in> <out>");
60 //          System.exit(2);
61 //      }
62          
63         Job job = Job.getInstance();
64         //job.setJar("MapReduceDriver.jar");
65         job.setJarByClass(test1.class);
66         // TODO: specify a mapper
67         job.setMapperClass(MyMapper.class);
68         job.setMapOutputKeyClass(/*map对应键类型*/Text.class);
69         job.setMapOutputValueClass( /*map对应值类型*/Text.class);
70          
71         // TODO: specify a reducer
72         job.setReducerClass(MyReducer.class);
73         job.setOutputKeyClass(/*reduce对应键类型*/Text.class);
74         job.setOutputValueClass(/*reduce对应值类型*/Text.class);
75  
76         // TODO: specify input and output DIRECTORIES (not files)
77         FileInputFormat.setInputPaths(job, new Path("hdfs://192.168.1.102:9000/user/hadoop/input/result.txt"));
78         FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.1.102:9000/user/hadoop/out"));
79  
80         boolean flag = job.waitForCompletion(true);
81         System.out.println("SUCCEED!"+flag);    //任务完成提示
82         System.exit(flag ? 0 : 1);
83         System.out.println();
84     }
85 }

数据清洗前:

 

 

数据清洗后:

 

 完成之后,用hive命令,将文件导入

    load data inpath '/user/local/hadoop/out/part-r-00000' overwrite into table result;

 

 

posted @ 2019-11-13 22:05  枫黎  阅读(324)  评论(0编辑  收藏  举报