分析
难度 易
来源
https://leetcode.com/problems/sqrtx/description/
题目
Implement int sqrt(int x)
.
Compute and return the square root of x, where x is guaranteed to be a non-negative integer.
Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.
Example 1:
Input: 4
Output: 2
Example 2:
Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
the decimal part is truncated, 2 is returned.
解答
方法1
1 package LeetCode; 2 /* 3 蛮力,Runtime: 63 ms, faster than 6.02% of Java online submissions for Sqrt(x). 4 */ 5 public class L69_SqrtX { 6 public int mySqrt(int x) { 7 int res=0; 8 int curSquare=0;//记录上一轮*方数, 9 int nextSquare=0; 10 for(int i=0;i<=x/2;i++) 11 { 12 nextSquare=(i+1)*(i+1); 13 if(nextSquare>x||nextSquare<curSquare)//如果*方溢出,一定是大于x的 14 break; 15 else{ 16 res++; 17 curSquare=nextSquare; 18 } 19 } 20 return res; 21 } 22 23 public static void main(String[] args){ 24 L69_SqrtX l69=new L69_SqrtX(); 25 System.out.println(l69.mySqrt(2147395600)); 26 } 27 }
方法2 牛顿法
1 public int mySqrt (int x) { 2 if (x <= 1) 3 return x; 4 double assume = x / 2; 5 while (Math.abs(Math.pow(assume, 2) - x) >=1) { 6 assume = (assume + x/assume) / 2;//求当前值与除以x的结果的均值,故能不断接**方根 7 } 8 return (int) Math.floor(assume); 9 }
方法3 //二分查找
1 public int mySqrt (int x) { 2 if (x <= 1) 3 return x; 4 int left=1,right=Integer.MAX_VALUE; 5 int res=0; 6 while(left<right){ 7 res=left+(right-left)/2;//防止溢出 8 if(res>x/res){ 9 right=res; 10 }else{ 11 left=res; 12 } 13 if(right-left<=1) 14 break; 15 } 16 return (left+right)/2; 17 }
博客园的编辑器没有CSDN的编辑器高大上啊