Xception Pytorch代码复现
文章目录
参考文章 经典卷积架构的PyTorch实现:Xception
参考文章 卷积神经网络结构简述(二)Inception系列网络
github 项目 Xception backbone
深度可分离卷积
在轻量级的网络中,会有深度可分离卷积 depthwise separable convolution,由depthwise 和pointwise组合,用于提取feature map。
depthwise convolution的一个卷积核只负责一个通道,输入与输出的通道数相同,无法扩展featuremap,没有有效利用不同通道在相同空间位置上的feature信息,因此需要pointwise covolution将feature map进行有效组合。
depthwise convolution,
N
=
3
∗
3
∗
3
N = 3*3*3
N=3∗3∗3
pointwise convolution,
N
=
1
∗
1
∗
3
∗
4
N = 1*1*3*4
N=1∗1∗3∗4
如果是常规卷积操作的话,需要用到 3 ∗ 3 ∗ 4 3*3*4 3∗3∗4的参数,因此使用深度可分离卷积能有效减少参数的个数。
class SeparableConv2d(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=1,stride=1,padding=0,dilation=1,bias=False):
super(SeparableConv2d,self).__init__()
self.conv1 = nn.Conv2d(in_channels,in_channels,kernel_size,stride,padding,dilation,groups=in_channels,bias=bias)
self.pointwise = nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=bias)
def forward(self,x):
x = self.conv1(x)
x = self.pointwise(x)
return x
Inception发展
GoogleNet
与VGG等网络以为堆叠深度不同,为了解决随着网络加深面临的参数数量过多,过拟合的问题,GoogleNet率先提出了卷积核的并行合并。与VGG相比有以下改进:
- 使用不同大小的kernel,网络在每一层中都可以学习到稀疏特征( 3 ∗ 3 3*3 3∗3, 5 ∗ 5 5*5 5∗5 kernel)与非稀疏特征( 1 ∗ 1 1*1 1∗1 kernel)。
- 增加网络宽度,增加网络对尺度的适应性。
- 通过不同block的concat,获得非线性属性。
但同样面临着随着网络深度加深计算量大的问题。因此借鉴Network in network思想,使用 1 ∗ 1 1*1 1∗1的卷积核进行降维操作,减小网络的参数量,即inception V1。
Inception Network
inception V1
based on inception V1的结构,inception V2和V3的改进遵循以下原则:
- 特征图从输入到输出应该缓慢减小
- 在卷积网络中增加非线性可以使网络训练更快
- 在大尺度卷积之前先对输入进行降维不会影响特征的表达能力。即在空间聚合可以以低维度嵌入进行。
- 平衡网络的深度和宽度。
inception V2
inception V2 使用了:
- BN层
- 使用两个 3 ∗ 3 3*3 3∗3的卷积核代替了 5 ∗ 5 5*5 5∗5的卷积核,具有更少的参数,间接增加了网络的深度。
由于inception V2采用的是先pooling再inception的结构,会造成表达的瓶颈问题,即特征图的大小不能急剧缩减,只经过一层就骤降,会丢失大量信息,对模型训练造成困难。
inception V3
inception V3 采用并联降维的结构,即经过conv和pool然后concat出结果。
35-17
17-8
inception V4
在inception V3的基础上,将网络前几层的卷积、池化操作替换为stem模块,加深网络结构。
Xception
Xception 将 inception中的inception模块替换成深度可分离卷积。
网络引入ResNet思想,引入skip connection,每个卷积后都做了BN操作。
"""
Xception is adapted from https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/xception.py
Ported to pytorch thanks to [tstandley](https://github.com/tstandley/Xception-PyTorch)
@author: tstandley
Adapted by cadene
Creates an Xception Model as defined in:
Francois Chollet
Xception: Deep Learning with Depthwise Separable Convolutions
https://arxiv.org/pdf/1610.02357.pdf
This weights ported from the Keras implementation. Achieves the following performance on the validation set:
Loss:0.9173 Prec@1:78.892 Prec@5:94.292
REMEMBER to set your image size to 3x299x299 for both test and validation
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
"""
from __future__ import print_function, division, absolute_import
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch.nn import init
__all__ = ['xception']
pretrained_settings = {
'xception': {
'imagenet': {
'url': 'http://data.lip6.fr/cadene/pretrainedmodels/xception-43020ad28.pth',
'input_space': 'RGB',
'input_size': [3, 299, 299],
'input_range': [0, 1],
'mean': [0.5, 0.5, 0.5],
'std': [0.5, 0.5, 0.5],
'num_classes': 1000,
'scale': 0.8975 # The resize parameter of the validation transform should be 333, and make sure to center crop at 299x299
}
}
}
class SeparableConv2d(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=1,stride=1,padding=0,dilation=1,bias=False):
super(SeparableConv2d,self).__init__()
self.conv1 = nn.Conv2d(in_channels,in_channels,kernel_size,stride,padding,dilation,groups=in_channels,bias=bias)
self.pointwise = nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=bias)
def forward(self,x):
x = self.conv1(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self,in_filters,out_filters,reps,strides=1,start_with_relu=True,grow_first=True, dilation=1):
super(Block, self).__init__()
# skip connections
if out_filters != in_filters or strides!=1:
self.skip = nn.Conv2d(in_filters,out_filters,1,stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip=None
rep=[]
filters=in_filters
if grow_first:
rep.append(nn.ReLU(inplace=True))
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=dilation, dilation=dilation, bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters
for i in range(reps-1):
rep.append(nn.ReLU(inplace=True))
rep.append(SeparableConv2d(filters,filters,3,stride=1,padding=dilation,dilation=dilation,bias=False))
rep.append(nn.BatchNorm2d(filters))
if not grow_first:
rep.append(nn.ReLU(inplace=True))
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=dilation,dilation=dilation,bias=False))
rep.append(nn.BatchNorm2d(out_filters))
if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)
if strides != 1:
rep.append(nn.MaxPool2d(3,strides,1))
self.rep = nn.Sequential(*rep)
def forward(self,inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else: # middle flow
skip = inp
x+=skip
return x
class Xception(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, num_classes=1000, replace_stride_with_dilation=None):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()
self.num_classes = num_classes
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False, False]
if len(replace_stride_with_dilation) != 4:
raise ValueError("replace_stride_with_dilation should be None "
"or a 4-element tuple, got {}".format(replace_stride_with_dilation))
self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False) # 1 / 2
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32,64,3,bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
#do relu here
self.block1=self._make_block(64,128,2,2,start_with_relu=False,grow_first=True, dilate=replace_stride_with_dilation[0]) # 1 / 4
self.block2=self._make_block(128,256,2,2,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[1]) # 1 / 8
self.block3=self._make_block(256,728,2,2,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2]) # 1 / 16
self.block4=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block5=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block6=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block7=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block8=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block9=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block10=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block11=self._make_block(728,728,3,1,start_with_relu=True,grow_first=True, dilate=replace_stride_with_dilation[2])
self.block12=self._make_block(728,1024,2,2,start_with_relu=True,grow_first=False, dilate=replace_stride_with_dilation[3]) # 1 / 32
self.conv3 = SeparableConv2d(1024,1536,3,1,1, dilation=self.dilation)
self.bn3 = nn.BatchNorm2d(1536)
self.relu3 = nn.ReLU(inplace=True)
#do relu here
self.conv4 = SeparableConv2d(1536,2048,3,1,1, dilation=self.dilation)
self.bn4 = nn.BatchNorm2d(2048)
self.fc = nn.Linear(2048, num_classes)
# #------- init weights --------
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
# elif isinstance(m, nn.BatchNorm2d):
# m.weight.data.fill_(1)
# m.bias.data.zero_()
# #-----------------------------
def _make_block(self, in_filters,out_filters,reps,strides=1,start_with_relu=True,grow_first=True, dilate=False):
if dilate:
self.dilation *= strides
strides = 1
return Block(in_filters,out_filters,reps,strides,start_with_relu=start_with_relu,grow_first=grow_first, dilation=self.dilation)
def features(self, input):
x = self.conv1(input)
x = self.bn1(x)
x = self.relu1(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.conv4(x)
x = self.bn4(x)
return x
def logits(self, features):
x = nn.ReLU(inplace=True)(features)
x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
x = self.last_linear(x)
return x
def forward(self, input):
x = self.features(input)
x = self.logits(x)
return x
def xception(num_classes=1000, pretrained='imagenet', replace_stride_with_dilation=None):
model = Xception(num_classes=num_classes, replace_stride_with_dilation=replace_stride_with_dilation)
if pretrained:
settings = pretrained_settings['xception'][pretrained]
assert num_classes == settings['num_classes'], \
"num_classes should be {}, but is {}".format(settings['num_classes'], num_classes)
model = Xception(num_classes=num_classes, replace_stride_with_dilation=replace_stride_with_dilation)
model.load_state_dict(model_zoo.load_url(settings['url']))
# TODO: ugly
model.last_linear = model.fc
del model.fc
return model
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构