[Luogu] P1939 【模板】矩阵加速(数列)
题目描述
a[1]=a[2]=a[3]=1
a[x]=a[x-3]+a[x-1] (x>3)
求a数列的第n项对1000000007(10^9+7)取余的值。
题目解析
顺序:x.x,y.y,x.y
Code
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int MOD = 1000000007; struct Matrix { long long m[10][10]; int sx,sy; } str,pro; long long n; void init() { str.m[1][1] = str.m[1][2] = str.m[1][3] = 1; str.sx = 1; str.sy = 3; pro.m[1][1] = pro.m[1][2] = pro.m[2][2] = pro.m[2][3] = pro.m[3][1] = 0; pro.m[1][3] = pro.m[2][1] = pro.m[3][2] = pro.m[3][3] = 1; pro.sx = pro.sy = 3; return; } inline Matrix mul(Matrix a,Matrix b) { Matrix res; memset(res.m,0,sizeof(res.m)); for(int i = 1;i <= a.sx;i++) { for(int j = 1;j <= b.sy;j++) { for(int k = 1;k <= b.sx;k++) { res.m[i][j] += a.m[i][k] * b.m[k][j] % MOD; res.m[i][j] %= MOD; } } } res.sx = a.sx, res.sy = b.sy; return res; } inline Matrix quick_pow(Matrix x,long long y) { Matrix res; res.sx = str.sx; res.sy = str.sy; for(int i = 1;i <= 5;i++) { for(int j = 1;j <= 5;j++) { res.m[i][j] = (i==j); } } while(y) { if(y & 1) res = mul(res,x); x = mul(x,x); y >>= 1; } return res; } int main() { int T; scanf("%d",&T); while(T--) { scanf("%lld",&n); init(); if(n <= 3) { puts("1"); continue; } Matrix ans = mul(str,quick_pow(pro,n)); printf("%lld\n",ans.m[1][3]); } return 0; }
所有博文均为原创 转载请留言征得博主同意