【hdu 6172】Array Challenge(数列、找规律)
多校10 1002 HDU 6172 Array Challenge
题意
There’s an array that is generated by following rule.
\(h_0=2,h_1=3,h_2=6,h_n=4h_{n-1}+17h_{n-2}-12h_{n-3}-16\)
And let us define two arrays bnandan as below.
\(
b_n=3h_{n+1} h_n+9h_{n+1} h_{n-1}+9h_n^2+27h_n h_{n-1}-18h_{n+1}-126h_n-81h_{n-1}+192(n>0)
\)
\(
a_n=b_n+4^n
\)
Now, you have to print \(\left \lfloor \sqrt{a_n} \right \rfloor\) , n>1.
Your answer could be very large so print the answer modular 1000000007.
题解
首先要打表,然后就可以:
方法1,找规律:
令\(f_n=\left \lfloor \sqrt{a_n} \right \rfloor\),打表出来,发现接近7倍关系,再打出 \(7f_{n-1}-f_{n}\),会发现是\(f_{n-2}\)的4倍,所以\(f_n=7f_{n-1}-4f_{n-2}\)。再用矩阵快速幂。注意取模有负数。
方法2,猜:
前几项和h的前几项差不多,于是模仿h的递推式,\(f_n=4f_{n-1}+17f_{n-2}-12f_{n-3}\),刚好符合。
方法3,BM算法:
如果递推式是线性的,就把前几项带进去就可以得到递推式。
具体算法介绍建议看这个:Berlekamp–Massey algorithm(From Wikipedia)、
"Shift-register synthesis and BCH decoding"
方法4,数学递推,我不会。
代码
#include <cstdio>
#include <map>
#include <cstdlib>
#include <queue>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,l,r) for (int i=l;i<r;++i)
typedef unsigned long long ull;
int dx[4]={1,1,-1,-1},dy[4]={0,1,0,-1};
map<ull,bool>vis;
struct Sta{
int a[6][6],step,x,y;
Sta(){step=x=y=0;}
};
int gujia(Sta s){
int ans=0;
rep(i,0,6)rep(j,0,i+1)
if(s.a[i][j])ans+=abs(s.a[i][j]-i);
return ans;
}
ull haxi(Sta s){
ull ans=0;
rep(i,0,6)rep(j,0,i+1){
ans<<=3;ans|=s.a[i][j];
}
return ans;
}
int bfs(Sta s){
vis.clear();
queue<Sta>q;q.push(s);
while(!q.empty()){
Sta now=q.front();q.pop();
if(gujia(now)==0)return now.step;
rep(i,0,4){
int x=now.x,y=now.y;
int nx=x+dx[i],ny=y+dy[i];
if(nx>=0 && nx<6 && ny>=0 && ny<=nx){
swap(now.a[x][y],now.a[nx][ny]);
now.x=nx,now.y=ny,++now.step;
ull hx=haxi(now);
if(!vis[hx]&&gujia(now)+now.step<21){
q.push(now);
vis[hx]=true;
}
swap(now.a[x][y],now.a[nx][ny]);
now.x-=dx[i],now.y-=dy[i],--now.step;
}
}
}
return -1;
}
int main() {
int t;
scanf("%d",&t);
while(t--){
Sta s;
rep(i,0,6)
rep(j,0,i+1){
scanf("%d",&s.a[i][j]);
if(s.a[i][j]==0)s.x=i,s.y=j;
}
int ans=bfs(s);
if(ans==-1)puts("too difficult");else printf("%d\n",ans);
}
return 0;
}
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define pb push_back
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
const ll mod=1000000007;
ll qpow(ll a,ll b) {ll res=1;for(a%=mod;b;b>>=1,a=a*a%mod)if(b&1)res=res*a%mod;return res;}
VI BM(VI s) {//c[0]s[0]+c[1]s[1]+...=0
VI C(1,1),B(1,1);
int L=0,m=1,rev=1;
rep(n,0,SZ(s)) {
ll d=0;
rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==0) ++m;
else if (2*L<=n) {
VI T=C;
ll c=mod-d*rev%mod;
C.resize(SZ(B)+m);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+1-L; B=T; rev=qpow(d,mod-2); m=1;
} else {
ll c=mod-d*rev%mod;
C.resize(SZ(B)+m);
rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
rep(i,0,SZ(C))printf("%dx[%d]%s",C[i],i,i+1==SZ(C)?"=0\n":"+");
return C;
}
调用:BM(VI{31,197,1255,7997})
┆凉┆暖┆降┆等┆幸┆我┆我┆里┆将┆ ┆可┆有┆谦┆戮┆那┆ ┆大┆始┆ ┆然┆
┆薄┆一┆临┆你┆的┆还┆没┆ ┆来┆ ┆是┆来┆逊┆没┆些┆ ┆雁┆终┆ ┆而┆
┆ ┆暖┆ ┆如┆地┆站┆有┆ ┆也┆ ┆我┆ ┆的┆有┆精┆ ┆也┆没┆ ┆你┆
┆ ┆这┆ ┆试┆方┆在┆逃┆ ┆会┆ ┆在┆ ┆清┆来┆准┆ ┆没┆有┆ ┆没┆
┆ ┆生┆ ┆探┆ ┆最┆避┆ ┆在┆ ┆这┆ ┆晨┆ ┆的┆ ┆有┆来┆ ┆有┆
┆ ┆之┆ ┆般┆ ┆不┆ ┆ ┆这┆ ┆里┆ ┆没┆ ┆杀┆ ┆来┆ ┆ ┆来┆